login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A204180
Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of (f(i,j)), where f(i,1)=f(1,j)=1, f(i,i)= i; f(i,j)=0 otherwise; as in A204179.
2
1, -1, 1, -3, 1, 1, -9, 6, -1, -2, -32, 32, -10, 1, -34, -132, 183, -81, 15, -1, -324, -604, 1159, -655, 170, -21, 1, -2988, -2860, 8137, -5589, 1825, -316, 28, -1, -28944, -11864, 62852, -51184, 19894, -4326, 539, -36, 1, -300816, -8568
OFFSET
1,4
COMMENTS
Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are real, and they interlace the zeros of p(n+1). See A202605 and A204016 for guides to related sequences.
REFERENCES
(For references regarding interlacing roots, see A202605.)
LINKS
Robert Israel, Table of n, a(n) for n = 1..10010 (rows 1 to 140, flattened)
FORMULA
From Robert Israel, Jun 26 2018: (Start)
p(n,x) = (1 - Sum_{k=2..n} 1/((1-x)*(k-x)))*Product_{k=1..n} (k - x).
p(n+1,x) = (n+1-x)*p(n,x) - Gamma(n+1-x)/Gamma(2-x). (End)
EXAMPLE
Top of the array:
1, -1;
1, -3, 1;
1, -9, 6, -1;
-2, -32, 32, -10, 1;
MAPLE
f:= proc(n) local P;
P:= normal(mul(i-lambda, i=1..n)*(1 - add(1/(lambda-1)/(lambda-i), i=2..n)));
seq(coeff(P, lambda, i), i=0..n);
end proc:
seq(f(n), n=1..20); # Robert Israel, Jun 26 2018
MATHEMATICA
f[i_, j_] := 0; f[1, j_] := 1; f[i_, 1] := 1; f[i_, i_] := i;
m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
TableForm[m[8]] (* 8x8 principal submatrix *)
Flatten[Table[f[i, n + 1 - i],
{n, 1, 15}, {i, 1, n}]] (* A204179 *)
p[n_] := CharacteristicPolynomial[m[n], x];
c[n_] := CoefficientList[p[n], x]
TableForm[Flatten[Table[p[n], {n, 1, 10}]]]
Table[c[n], {n, 1, 12}]
Flatten[%] (* A204180 *)
TableForm[Table[c[n], {n, 1, 10}]]
CROSSREFS
KEYWORD
tabf,sign
AUTHOR
Clark Kimberling, Jan 12 2012
STATUS
approved