login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of (f(i,j)), where f(i,1)=f(1,j)=1, f(i,i)= i; f(i,j)=0 otherwise; as in A204179.
2

%I #18 Oct 24 2024 05:40:53

%S 1,-1,1,-3,1,1,-9,6,-1,-2,-32,32,-10,1,-34,-132,183,-81,15,-1,-324,

%T -604,1159,-655,170,-21,1,-2988,-2860,8137,-5589,1825,-316,28,-1,

%U -28944,-11864,62852,-51184,19894,-4326,539,-36,1,-300816,-8568

%N Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of (f(i,j)), where f(i,1)=f(1,j)=1, f(i,i)= i; f(i,j)=0 otherwise; as in A204179.

%C Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are real, and they interlace the zeros of p(n+1). See A202605 and A204016 for guides to related sequences.

%D (For references regarding interlacing roots, see A202605.)

%H Robert Israel, <a href="/A204180/b204180.txt">Table of n, a(n) for n = 1..10010</a> (rows 1 to 140, flattened)

%F From _Robert Israel_, Jun 26 2018: (Start)

%F p(n,x) = (1 - Sum_{k=2..n} 1/((1-x)*(k-x)))*Product_{k=1..n} (k - x).

%F p(n+1,x) = (n+1-x)*p(n,x) - Gamma(n+1-x)/Gamma(2-x). (End)

%e Top of the array:

%e 1, -1;

%e 1, -3, 1;

%e 1, -9, 6, -1;

%e -2, -32, 32, -10, 1;

%p f:= proc(n) local P;

%p P:= normal(mul(i-lambda,i=1..n)*(1 - add(1/(lambda-1)/(lambda-i),i=2..n)));

%p seq(coeff(P,lambda,i),i=0..n);

%p end proc:

%p seq(f(n),n=1..20); # _Robert Israel_, Jun 26 2018

%t f[i_, j_] := 0; f[1, j_] := 1; f[i_, 1] := 1; f[i_, i_] := i;

%t m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]

%t TableForm[m[8]] (* 8x8 principal submatrix *)

%t Flatten[Table[f[i, n + 1 - i],

%t {n, 1, 15}, {i, 1, n}]] (* A204179 *)

%t p[n_] := CharacteristicPolynomial[m[n], x];

%t c[n_] := CoefficientList[p[n], x]

%t TableForm[Flatten[Table[p[n], {n, 1, 10}]]]

%t Table[c[n], {n, 1, 12}]

%t Flatten[%] (* A204180 *)

%t TableForm[Table[c[n], {n, 1, 10}]]

%Y Cf. A204179, A202605, A204016.

%K tabf,sign

%O 1,4

%A _Clark Kimberling_, Jan 12 2012