login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A319729
Regular triangle read by rows where T(n,k) is the number of labeled simple graphs on n vertices where all non-isolated vertices have degree k.
6
1, 1, 1, 1, 3, 1, 1, 9, 7, 1, 1, 25, 37, 5, 1, 1, 75, 207, 85, 21, 1, 1, 231, 1347, 525, 591, 7, 1, 1, 763, 10125, 21385, 23551, 3535, 113, 1, 1, 2619, 86173, 180201, 1216701, 31647, 30997, 9, 1, 1, 9495, 819133, 12066705, 77636583, 66620631, 11485825, 286929, 955, 1
OFFSET
1,5
LINKS
FORMULA
T(n,k) = Sum_{i=1..n} binomial(n,i)*A059441(i,k) for k > 0. - Andrew Howroyd, Dec 26 2020
EXAMPLE
Triangle begins:
1
1 1
1 3 1
1 9 7 1
1 25 37 5 1
1 75 207 85 21 1
1 231 1347 525 591 7 1
1 763 10125 21385 23551 3535 113 1
1 2619 86173 180201 1216701 31647 30997 9 1
MATHEMATICA
Table[If[k==0, 1, Sum[Binomial[n, sup]*SeriesCoefficient[Product[1+Times@@x/@s, {s, Subsets[Range[sup], {2}]}], Sequence@@Table[{x[i], 0, k}, {i, sup}]], {sup, n}]], {n, 8}, {k, 0, n-1}]
KEYWORD
nonn,tabl
AUTHOR
Gus Wiseman, Dec 17 2018
STATUS
approved