login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A243381
Decimal expansion of Pi^2/(16*K^2*G) = Product_{p prime congruent to 3 modulo 4} (1 + 1/p^2), where K is the Landau-Ramanujan constant and G Catalan's constant.
13
1, 1, 5, 3, 0, 8, 0, 5, 6, 1, 5, 8, 5, 4, 4, 7, 8, 7, 0, 3, 6, 5, 2, 5, 8, 0, 6, 8, 5, 6, 1, 7, 6, 3, 3, 6, 5, 1, 0, 4, 8, 4, 4, 8, 7, 0, 8, 0, 3, 9, 3, 1, 8, 8, 6, 7, 7, 9, 2, 3, 1, 9, 0, 2, 1, 0, 3, 5, 4, 6, 8, 4, 1, 3, 2, 5, 2, 9, 8, 2, 0, 0, 4, 3, 5, 4, 9, 2, 5, 3, 5, 9, 2, 8, 1, 2, 0, 7, 8, 1, 2
OFFSET
1,3
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.3 Landau-Ramanujan constant, p. 101.
LINKS
Eric Weisstein's MathWorld, Ramanujan constant.
Eric Weisstein's MathWorld, Catalan's Constant.
FORMULA
Equals Pi^2/(16*K^2*G), where K is the Landau-Ramanujan constant (A064533) and G Catalan's constant (A006752).
A243380 * A243381 = 12/Pi^2. - Vaclav Kotesovec, Apr 30 2020
EXAMPLE
1.1530805615854478703652580685617633651...
MATHEMATICA
digits = 101; LandauRamanujanK = 1/Sqrt[2]*NProduct[((1 - 2^(-2^n))*Zeta[2^n]/DirichletBeta[2^n])^(1/2^(n + 1)), {n, 1, 24}, WorkingPrecision -> digits + 5]; Pi^2/(16*LandauRamanujanK^2*Catalan) // RealDigits[#, 10, digits] & // First (* updated Mar 14 2018 *)
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
STATUS
approved