login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A342698
For any number n with binary expansion (b(1), b(2), ..., b(k)), the binary expansion of a(n) is (floor((b(k)+b(1)+b(2))/2), floor((b(1)+b(2)+b(3))/2), ..., floor((b(k-1)+b(k)+b(1))/2)).
4
0, 1, 1, 3, 0, 7, 7, 7, 0, 9, 5, 15, 12, 15, 15, 15, 0, 17, 1, 19, 8, 27, 15, 31, 24, 25, 29, 31, 28, 31, 31, 31, 0, 33, 1, 35, 0, 35, 7, 39, 16, 49, 21, 55, 28, 63, 31, 63, 48, 49, 49, 51, 56, 59, 63, 63, 56, 57, 61, 63, 60, 63, 63, 63, 0, 65, 1, 67, 0, 67, 7
OFFSET
0,4
COMMENTS
This sequence is a variant of A342697; here we deal with bit triples in a "cyclic" binary representation of n.
FORMULA
a(n) + A342700(n) = A003817(n).
a(n) = n iff n belongs to A342699.
EXAMPLE
The first terms, in decimal and in binary, are:
n a(n) bin(n) bin(a(n))
-- ---- ------ ---------
0 0 0 0
1 1 1 1
2 1 10 1
3 3 11 11
4 0 100 0
5 7 101 111
6 7 110 111
7 7 111 111
8 0 1000 0
9 9 1001 1001
10 5 1010 101
11 15 1011 1111
12 12 1100 1100
13 15 1101 1111
14 15 1110 1111
15 15 1111 1111
PROG
(PARI) a(n) = my (w=#binary(n)); sum(k=0, w-1, ((bittest(n, (k-1)%w)+bittest(n, k%w)+bittest(n, (k+1)%w))>=2) * 2^k)
CROSSREFS
Cf. A003817, A342697, A342699 (fixed points), A342700.
Sequence in context: A201900 A344387 A019970 * A239022 A343612 A363502
KEYWORD
nonn,base
AUTHOR
Rémy Sigrist, Mar 18 2021
STATUS
approved