login
A081040
5th binomial transform of (1,4,0,0,0,0,...).
7
1, 9, 65, 425, 2625, 15625, 90625, 515625, 2890625, 16015625, 87890625, 478515625, 2587890625, 13916015625, 74462890625, 396728515625, 2105712890625, 11138916015625, 58746337890625, 308990478515625, 1621246337890625
OFFSET
0,2
LINKS
Silvana Ramaj, New Results on Cyclic Compositions and Multicompositions, Master's Thesis, Georgia Southern Univ., 2021. See p. 67.
FORMULA
a(n) = 10*a(n-1) - 25*a(n-2), a(0)=1, a(1)=9.
a(n) = (4n+5)*5^(n-1).
a(n) = Sum_{k=0..n} (k+1)*4^k*binomial(n, k).
G.f.: (1-x)/(1-5*x)^2.
E.g.f.: exp(5*x)*(1 + 4*x). - Stefano Spezia, Jan 31 2025
MATHEMATICA
CoefficientList[Series[(1 - x) / (1 - 5 x)^2, {x, 0, 30}], x] (* Vincenzo Librandi, Aug 06 2013 *)
LinearRecurrence[{10, -25}, {1, 9}, 30] (* Harvey P. Dale, Jan 10 2021 *)
PROG
(Magma) [(4*n+5)*5^(n-1): n in [0..25]]; // Vincenzo Librandi, Aug 06 2013
(PARI) a(n)=(4*n+5)*5^(n-1) \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
Sequence in context: A237040 A055284 A351530 * A102902 A127534 A037548
KEYWORD
nonn,easy,changed
AUTHOR
Paul Barry, Mar 03 2003
STATUS
approved