login
A081039
4th binomial transform of (1,3,0,0,0,0,0,.....).
6
1, 7, 40, 208, 1024, 4864, 22528, 102400, 458752, 2031616, 8912896, 38797312, 167772160, 721420288, 3087007744, 13153337344, 55834574848, 236223201280, 996432412672, 4191888080896, 17592186044416, 73667279060992
OFFSET
0,2
LINKS
Silvana Ramaj, New Results on Cyclic Compositions and Multicompositions, Master's Thesis, Georgia Southern Univ., 2021. See p. 67.
FORMULA
a(n) = 8*a(n-1) -16*a(n-2) with n>1, a(0)=1, a(1)=7.
a(n) = (3*n+4)*4^(n-1).
a(n) = Sum_{k=0..n} (k+1)*3^k*binomial(n, k).
G.f.: (1-x)/(1-4*x)^2.
E.g.f.: exp(4*x)*(1 + 3*x). - Stefano Spezia, Jan 31 2025
MATHEMATICA
CoefficientList[Series[(1 - x)/(1 - 4 x)^2, {x, 0, 30}], x] (* Vincenzo Librandi, Aug 06 2013 *)
LinearRecurrence[{8, -16}, {1, 7}, 30] (* Harvey P. Dale, Dec 13 2015 *)
PROG
(Magma) [(3*n+4)*4^(n-1): n in [0..25]]; // Vincenzo Librandi, Aug 06 2013
(PARI) a(n)=(3*n+4)*4^(n-1) \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
Sequence in context: A093737 A268402 A351529 * A227748 A349594 A083327
KEYWORD
nonn,easy,changed
AUTHOR
Paul Barry, Mar 03 2003
STATUS
approved