OFFSET
0,2
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..300
Silvana Ramaj, New Results on Cyclic Compositions and Multicompositions, Master's Thesis, Georgia Southern Univ., 2021. See p. 67.
Index entries for linear recurrences with constant coefficients, signature (8,-16).
FORMULA
a(n) = 8*a(n-1) -16*a(n-2) with n>1, a(0)=1, a(1)=7.
a(n) = (3*n+4)*4^(n-1).
a(n) = Sum_{k=0..n} (k+1)*3^k*binomial(n, k).
G.f.: (1-x)/(1-4*x)^2.
E.g.f.: exp(4*x)*(1 + 3*x). - Stefano Spezia, Jan 31 2025
MATHEMATICA
CoefficientList[Series[(1 - x)/(1 - 4 x)^2, {x, 0, 30}], x] (* Vincenzo Librandi, Aug 06 2013 *)
LinearRecurrence[{8, -16}, {1, 7}, 30] (* Harvey P. Dale, Dec 13 2015 *)
PROG
(Magma) [(3*n+4)*4^(n-1): n in [0..25]]; // Vincenzo Librandi, Aug 06 2013
(PARI) a(n)=(3*n+4)*4^(n-1) \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
KEYWORD
nonn,easy,changed
AUTHOR
Paul Barry, Mar 03 2003
STATUS
approved