login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A081041
6th binomial transform of (1,5,0,0,0,0,0,0,...).
3
1, 11, 96, 756, 5616, 40176, 279936, 1912896, 12877056, 85660416, 564350976, 3688436736, 23944605696, 154551545856, 992612745216, 6347497291776, 40435908673536, 256721001578496, 1624959306694656, 10257555623510016
OFFSET
0,2
LINKS
Silvana Ramaj, New Results on Cyclic Compositions and Multicompositions, Master's Thesis, Georgia Southern Univ., 2021. See p. 67.
FORMULA
a(n) = 12*a(n-1) - 36*a(n-2) for n>1, a(0)=1, a(1)=9.
a(n) = (5*n+6)*6^(n-1).
a(n) = Sum_{k=0..n} (k+1)*5^k*binomial(n, k).
G.f.: (1-x)/(1-6x)^2.
MATHEMATICA
CoefficientList[Series[(1 - x)/(1 - 6 x)^2, {x, 0, 30}], x] (* Vincenzo Librandi, Aug 06 2013 *)
LinearRecurrence[{12, -36}, {1, 11}, 20] (* Harvey P. Dale, Mar 04 2019 *)
PROG
(Magma) [(5*n+6)*6^(n-1): n in [0..25]]; // Vincenzo Librandi, Aug 06 2013
CROSSREFS
Sequence in context: A051446 A271632 A055286 * A294724 A115351 A154997
KEYWORD
nonn,easy
AUTHOR
Paul Barry, Mar 04 2003
STATUS
approved