login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A050181
T(2n+3, n), array T as in A051168; a count of Lyndon words.
4
0, 1, 3, 9, 30, 99, 333, 1144, 3978, 13995, 49742, 178296, 643842, 2340135, 8554275, 31429026, 115997970, 429874830, 1598952366, 5967382200, 22338765540, 83859016527, 315614844558, 1190680751376, 4501802223090, 17055399281284
OFFSET
0,3
FORMULA
Conjecture: -(n-1)*(n+3)*(n+2)*a(n) + 2*(3*n-4)*(n+2)*(n+1)*a(n-1) - 4*n*(n+1)*(2*n-5)*a(n-2) + 2*(n-1)*(n+2)*(2*n-3)*a(n-3) - 4*(2*n-5)*(3*n-4)*(n+1)*a(n-4) + 8*n*(2*n-5)*(2*n-7)*a(n-5) = 0. - R. J. Mathar, Jul 20 2016
From Petros Hadjicostas, Nov 16 2017: (Start)
a(n) = (1/(2*n+3))*Sum_{d|gcd(n,3)} mu(d)*binomial((2*n+3)/d, n/d). (This is a special case of A. Howroyd's formula for double array A051168.)
a(n) = (1/(2*n+3))*(binomial(2*n+3, n) - binomial((2*n/3)+1, n/3)) if 3|n; = (1/(2*n+3))*binomial(2*n+3, n) otherwise.
Using the above formulae, one can verify R. J. Mathar's conjecture above.
(End)
MAPLE
A050181 := proc(n)
A051168(2*n+3, n) ;
end proc: # R. J. Mathar, Jul 20 2016
MATHEMATICA
a[n_] := (1/(2n+3)) Sum[MoebiusMu[d] Binomial[(2n+3)/d, n/d], {d, Divisors[ GCD[n, 3]]}];
a /@ Range[0, 25] (* Jean-François Alcover, Sep 17 2019, from PARI *)
PROG
(PARI) a(n) = (1/(2*n+3))*sumdiv(gcd(n, 3), d, moebius(d)*binomial((2*n+3)/d, n/d)); \\ Michel Marcus, Nov 18 2017
CROSSREFS
Cf. A003441.
A diagonal of the square array described in A051168.
Sequence in context: A089978 A052906 A102898 * A275690 A089931 A148946
KEYWORD
nonn
STATUS
approved