OFFSET
0,3
FORMULA
Conjecture: -(n-1)*(n+3)*(n+2)*a(n) + 2*(3*n-4)*(n+2)*(n+1)*a(n-1) - 4*n*(n+1)*(2*n-5)*a(n-2) + 2*(n-1)*(n+2)*(2*n-3)*a(n-3) - 4*(2*n-5)*(3*n-4)*(n+1)*a(n-4) + 8*n*(2*n-5)*(2*n-7)*a(n-5) = 0. - R. J. Mathar, Jul 20 2016
From Petros Hadjicostas, Nov 16 2017: (Start)
a(n) = (1/(2*n+3))*Sum_{d|gcd(n,3)} mu(d)*binomial((2*n+3)/d, n/d). (This is a special case of A. Howroyd's formula for double array A051168.)
a(n) = (1/(2*n+3))*(binomial(2*n+3, n) - binomial((2*n/3)+1, n/3)) if 3|n; = (1/(2*n+3))*binomial(2*n+3, n) otherwise.
Using the above formulae, one can verify R. J. Mathar's conjecture above.
(End)
MAPLE
MATHEMATICA
a[n_] := (1/(2n+3)) Sum[MoebiusMu[d] Binomial[(2n+3)/d, n/d], {d, Divisors[ GCD[n, 3]]}];
a /@ Range[0, 25] (* Jean-François Alcover, Sep 17 2019, from PARI *)
PROG
(PARI) a(n) = (1/(2*n+3))*sumdiv(gcd(n, 3), d, moebius(d)*binomial((2*n+3)/d, n/d)); \\ Michel Marcus, Nov 18 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved