login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A050183
T(2n+5,n), array T as in A051168; a count of Lyndon words.
3
0, 1, 4, 15, 55, 200, 728, 2652, 9690, 35530, 130750, 482885, 1789515, 6653325, 24812400, 92798375, 347993910, 1308233790, 4929576600, 18615637950, 70441574000, 267058714626, 1014283603024, 3858687620200, 14702930414900
OFFSET
0,3
FORMULA
From Petros Hadjicostas, Dec 03 2017: (Start)
a(n) = (1/(2*n+5))*Sum_{d|gcd(n,5)} mu(d)*binomial((2*n+5)/d, n/d). (This is a special case of A. Howroyd's formula for double array A051168.)
a(n) = (1/(2*n+5))*(binomial(2*n+5, n) - binomial((2*n/5)+1, n/5)) if 5|n; = (1/(2*n+5))*binomial(2*n+5, n) otherwise.
(End)
MAPLE
A050183 := proc(n)
binomial(2*n+5, n) ;
if modp(n, 5) = 0 then
%-binomial(2*n/5+1, n/5) ;
end if;
%/(2*n+5) ;
end proc:
seq(A050183(n), n=0..40) ; # R. J. Mathar, Oct 28 2021
PROG
(PARI) a(n) = (1/(2*n+5))*sumdiv(gcd(n, 5), d, moebius(d)*binomial((2*n+5)/d, n/d)); \\ Michel Marcus, Dec 05 2017
CROSSREFS
A diagonal of the square array described in A051168.
Sequence in context: A220948 A026013 A371820 * A094375 A047018 A064813
KEYWORD
nonn
STATUS
approved