login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A094375
a(n) = (4^n - 2^n)/2 + 3^n.
1
1, 4, 15, 55, 201, 739, 2745, 10315, 39201, 150499, 582825, 2273275, 8918001, 35144659, 138992505, 551203435, 2190497601, 8719009219, 34747027785, 138600952795, 553242074001, 2209482560179, 8827471984665, 35278511073355
OFFSET
0,2
COMMENTS
Binomial transform of A094374.
FORMULA
G.f.: (1-5*x+5*x^2)/((1-2*x)*(1-3*x)*(1-4*x)).
a(n) = 9*a(n-1) - 26*a(n-2) + 24*a(n-3).
a(n) = A006516(n) + A000244(n).
E.g.f.: exp(3*x)*(1 + sinh(x)). - G. C. Greubel, Sep 26 2024
MATHEMATICA
LinearRecurrence[{9, -26, 24}, {1, 4, 15}, 31] (* G. C. Greubel, Sep 26 2024 *)
PROG
(Magma) [2^(n-1)*(2^n -1) +3^n: n in [0..30]]; // G. C. Greubel, Sep 26 2024
(SageMath) [(4^n +2*3^n -2^n)//2 for n in range(31)] # G. C. Greubel, Sep 26 2024
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Apr 28 2004
STATUS
approved