login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A094376
Least number having exactly n representations as ab+ac+bc with 0 < a < b < c.
5
1, 11, 23, 41, 47, 59, 71, 116, 119, 131, 164, 425, 191, 236, 239, 446, 335, 419, 311, 404, 431, 584, 647, 524, 479, 1019, 831, 776, 671, 944, 719, 1076, 839, 1004, 959, 1889, 1196, 2099, 1271, 1856, 1151, 1931, 1391, 1676, 1319, 1616, 1751, 3275, 1511
OFFSET
0,2
COMMENTS
Note that the Mathematica program computes A094376, A094377 and A094378, but outputs only this sequence.
REFERENCES
LINKS
EXAMPLE
a(2) = 23 because 23 is the least number with 2 representations: (a,b,c) = (1,2,7) and (1,3,5).
MAPLE
f:= proc(n) local a, t, s;
t:= 0;
for a from 1 to floor(sqrt(n/3)) do
t:= t + nops(select(s -> s > 2*a and n+a^2 > s^2, numtheory:-divisors(n+a^2)))
od;
t
end proc:
N:= 200: # for a(0)..a(N)
V:= Array(0..N): count:= 0:
for n from 1 while count < N+1 do
v:= f(n); if v <= N and V[v] = 0 then
count:= count+1; V[v]:= n; fi
od:
seq(V[i], i=0..N); # Robert Israel, May 05 2021
MATHEMATICA
cntMax=10; nSol=Table[{0, 0, 0}, {cntMax+1}]; Do[lim=Ceiling[(n-2)/3]; cnt=0; Do[If[n>a*b && Mod[n-a*b, a+b]==0 && Quotient[n-a*b, a+b]>b, cnt++; If[cnt>cntMax, Break[]]], {a, 1, lim-1}, {b, a+1, lim}]; If[cnt<=cntMax, If[nSol[[cnt+1, 1]]==0, nSol[[cnt+1, 1]]=n]; nSol[[cnt+1, 2]]=n; nSol[[cnt+1, 3]]++; ], {n, 10000}]; Table[nSol[[i, 1]], {i, cntMax+1}]
CROSSREFS
Cf. A000926 (n having no representations), A093669 (n having one representation), A025052, A094377, A094378.
Sequence in context: A046440 A232116 A119890 * A086524 A060915 A052034
KEYWORD
nonn
AUTHOR
T. D. Noe and Robert G. Wilson v, Apr 28 2004
STATUS
approved