OFFSET
1,2
COMMENTS
According to Borwein and Choi, if the Generalized Riemann Hypothesis is true, then this sequence has no larger terms, otherwise there may be one term greater than 10^11. - T. D. Noe, Apr 08 2004
Note that n+1 must be prime for all n in this sequence. - T. D. Noe, Apr 28 2004
Borwein and Choi prove (Theorem 6.2) that the equation N=xy+xz+yz has an integer solution x,y,z>0 if N contains a square factor and N is not 4 or 18. In the following simple proof explicit solutions are given. Let N=mn^2, m,n integer, m>0, n>1. If n<m+1: x=n, y=n(n-1), z=m+1-n. If n=m+1, n>3: x=6, y=n-3, z=n^2-4n+6. If n>m+1: if n=0 (mod m+1): x=m+1, y=m(m+1), z=m(n^2/(m+1)^2-1), if n=k (mod m+1), 0<k<m+1 : x=k, y=m+1-k, z=m(n^2-k^2)/(m+1)+k(k-1). - Herm Jan Brascamp (brashoek(AT)hi.nl), May 28 2007
LINKS
J. Borwein and K.-K. S. Choi, On the representations of xy+yz+zx, Experimental Mathematics, 9 (2000), 153-158.
Maohua Le, A note on positive integer solutions of the equation xy+yz+zx=n, Publ. Math. Debrecen 52 (1998) 159-165; Math. Rev. 98j:11016.
M. Peters, The Diophantine Equation xy + yz + zx = n and Indecomposable Binary Quadratic Forms, Experiment. Math., Volume 13, Issue 3 (2004), 273-274.
MATHEMATICA
n=500; lim=Ceiling[(n-1)/2]; lst={}; Do[m=a*b+a*c+b*c; If[m<=n, lst=Union[lst, {m}]], {a, lim}, {b, lim}, {c, lim}]; Complement[Range[n], lst]
CROSSREFS
KEYWORD
nonn,fini,nice
AUTHOR
EXTENSIONS
Corrected by R. H. Hardin
STATUS
approved