

A025052


Numbers not of form ab + bc + ca for 1<=a<=b<=c (probably the list is complete).


21



1, 2, 4, 6, 10, 18, 22, 30, 42, 58, 70, 78, 102, 130, 190, 210, 330, 462
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Subsequence of A000926.
According to Borwein and Choi, if the Generalized Riemann Hypothesis is true, then this sequence has no larger terms, otherwise there may be one term greater than 10^11.  T. D. Noe, Apr 08 2004
Note that n+1 must be prime for all n in this sequence.  T. D. Noe, Apr 28 2004
Borwein and Choi prove (Theorem 6.2) that the equation N=xy+xz+yz has an integer solution x,y,z>0 if N contains a square factor and N is not 4 or 18. In the following simple proof explicit solutions are given. Let N=mn^2, m,n integer, m>0, n>1. If n<m+1: x=n, y=n(n1), z=m+1n. If n=m+1, n>3: x=6, y=n3, z=n^24n+6. If n>m+1: if n=0 (mod m+1): x=m+1, y=m(m+1), z=m(n^2/(m+1)^21), if n=k (mod m+1), 0<k<m+1 : x=k, y=m+1k, z=m(n^2k^2)/(m+1)+k(k1).  Herm Jan Brascamp (brashoek(AT)hi.nl), May 28 2007


LINKS

Table of n, a(n) for n=1..18.
J. Borwein and K.K. S. Choi, On the representations of xy+yz+zx, Experimental Mathematics, 9 (2000), 153158.
Maohua Le, A note on positive integer solutions of the equation xy+yz+zx=n, Publ. Math. Debrecen 52 (1998) 159165; Math. Rev. 98j:11016.
M. Peters, The Diophantine Equation xy + yz + zx = n and Indecomposable Binary Quadratic Forms, Experiment. Math., Volume 13, Issue 3 (2004), 273274.


MATHEMATICA

n=500; lim=Ceiling[(n1)/2]; lst={}; Do[m=a*b+a*c+b*c; If[m<=n, lst=Union[lst, {m}]], {a, lim}, {b, lim}, {c, lim}]; Complement[Range[n], lst]


CROSSREFS

Cf. A027563, A027564, A027565, A027566, A055745, A034168.
Cf. A000926 (numbers not of the form ab+ac+bc, 0<a<b<c), A093669 (numbers having a unique representation as ab+ac+bc, 0<a<b<c), A093670 (numbers having a unique representation as ab+ac+bc, 0<=a<=b<=c).
Cf. A094379, A094380, A094381.
Sequence in context: A144023 A018164 A321403 * A142584 A098197 A175941
Adjacent sequences: A025049 A025050 A025051 * A025053 A025054 A025055


KEYWORD

nonn,fini,nice


AUTHOR

Clark Kimberling


EXTENSIONS

Corrected by R. H. Hardin


STATUS

approved



