login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A094379
Least number having exactly n representations as ab+ac+bc with 1 <= a <= b <= c.
5
1, 3, 11, 23, 35, 47, 59, 71, 95, 188, 119, 164, 231, 191, 215, 239, 299, 356, 335, 311, 404, 431, 591, 584, 524, 479, 551, 656, 831, 776, 671, 719, 791, 839, 1004, 1031, 959, 1244, 1196, 1439, 1271, 1151, 1931, 1847, 1391, 1319, 1811, 1784, 1616, 1511, 1799
OFFSET
0,2
COMMENTS
Note that the Mathematica program computes A094379, A094380 and A094381, but outputs only this sequence.
A066955(a(n)) = n and A066955(m) = n for m < a(n). [Reinhard Zumkeller, Mar 23 2012]
REFERENCES
LINKS
EXAMPLE
a(3) = 23 because 23 is the least number with 3 representations: (a,b,c) = (1,1,11), (1,2,7) and (1,3,5).
MATHEMATICA
cntMax=10; nSol=Table[{0, 0, 0}, {cntMax+1}]; Do[lim=Ceiling[(n-1)/2]; cnt=0; Do[If[n>a*b && Mod[n-a*b, a+b]==0 && Quotient[n-a*b, a+b]>=b, cnt++; If[cnt>cntMax, Break[]]], {a, 1, lim}, {b, a, lim}]; If[cnt<=cntMax, If[nSol[[cnt+1, 1]]==0, nSol[[cnt+1, 1]]=n]; nSol[[cnt+1, 2]]=n; nSol[[cnt+1, 3]]++; ], {n, 10000}]; Table[nSol[[i, 1]], {i, cntMax+1}]
PROG
(Haskell)
import Data.List (elemIndex)
import Data.Maybe (fromJust)
a094379 = (+ 1) . fromJust . (`elemIndex` a066955_list)
-- Reinhard Zumkeller, Mar 23 2012
CROSSREFS
Cf. A025052 (n having no representations), A093670 (n having one representation), A094380, A094381.
Sequence in context: A100860 A018630 A163780 * A072671 A320901 A119173
KEYWORD
nonn
AUTHOR
T. D. Noe, Apr 28 2004
STATUS
approved