login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A034168 Disjoint discriminants (one form per genus) of type 2 (doubled). 3
2, 6, 10, 22, 30, 42, 58, 70, 78, 102, 130, 190, 210, 330, 462 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

REFERENCES

J. M. Borwein and P. B. Borwein, Pi and the AGM, page 293.

L. E. Dickson, Introduction to the theory of numbers, Dover, NY, 1929.

LINKS

Table of n, a(n) for n=1..15.

J. M. Borwein, Adventures with the OEIS: Five sequences Tony may like, Guttman 70th [Birthday] Meeting, 2015, revised May 2016.

J. M. Borwein, Adventures with the OEIS: Five sequences Tony may like, Guttman 70th [Birthday] Meeting, 2015, revised May 2016. [Cached copy, with permission]

J. Borwein and K.-K. S. Choi, On the representations of xy+yz+zx, Experimental Mathematics, 9 (2000), 153-158.

Experimental Mathematics, Home Page

FORMULA

Intersection of A005843 and A139826. - Andrew Howroyd, Jun 09 2018

MATHEMATICA

noSol = {};

Do[lim = Ceiling[(n-2)/3]; found = False; Do[If[n > a*b && Mod[n - a*b, a+b] == 0 && Quotient[n - a*b, a+b] > b, found = True; Break[]], {a, 1, lim-1}, {b, a+1, lim}]; If[!found, AppendTo[noSol, n]], {n, 1000}];

Select[noSol, EvenQ[#] && SquareFreeQ[#]&] (* Jean-Fran├žois Alcover, Jul 21 2022, after T. D. Noe in A000926 *)

PROG

(PARI) ok(n)={n%4==2 && issquarefree(n) && !select(t->t<>2, quadclassunit(-4*n).cyc)} \\ Andrew Howroyd, Jun 09 2018

CROSSREFS

Cf. A000926, A005843, A034169, A055745, A139826. Subsequence of A025052.

Sequence in context: A140775 A077064 A080715 * A055745 A182000 A167512

Adjacent sequences:  A034165 A034166 A034167 * A034169 A034170 A034171

KEYWORD

nonn,fini,full,nice

AUTHOR

Jonathan Borwein (jborwein(AT)cecm.sfu.ca), choi(AT)cecm.sfu.ca (Stephen Choi)

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 29 00:44 EDT 2022. Contains 357081 sequences. (Running on oeis4.)