

A119890


Prime duet leaders: largest number of a prime duet.


4



11, 23, 41, 43, 61, 101, 113, 131, 151, 223, 241, 311, 313, 331, 401, 421, 601, 1013, 1031, 1033, 1051, 1103, 1123, 1213, 1231, 1301, 1303, 1321, 2003, 2111, 2113, 2131, 2203, 2221, 2311, 3011, 3121, 3301, 4001, 4003, 4021, 4111, 4201, 5011, 5101, 10103
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

A prime duet is a pair of two different prime numbers such that the second number is a 1digit number which is the sum of the digits of the first number.
The terms of the sequence must be at least 2 digits in length, so {5,5} is not a prime duet.  Harvey P. Dale, May 07 2021


LINKS

David A. Corneth, Table of n, a(n) for n = 1..10000 (first 600 terms from Harvey P. Dale)
L. Stevens, Prime ensembles
David A. Corneth, PARI program


EXAMPLE

113 is in the sequence because it is the largest number of the prime duet (113,5)


MATHEMATICA

Select[Prime[Range[5, 1300]], IntegerLength[Total[IntegerDigits[#]]]==1&&PrimeQ[Total[IntegerDigits[#]]]&] (* Harvey P. Dale, May 07 2021 *)


PROG

(PARI) See PARI link \\ David A. Corneth, May 07 2021


CROSSREFS

Cf. A119889, A119891, A119892.
Sequence in context: A019356 A046440 A232116 * A094376 A086524 A060915
Adjacent sequences: A119887 A119888 A119889 * A119891 A119892 A119893


KEYWORD

nonn,base


AUTHOR

Luc Stevens (lms022(AT)yahoo.com), May 27 2006


EXTENSIONS

Corrected by Harvey P. Dale, May 07 2021


STATUS

approved



