login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A050182
a(n) = T(2*n+4, n), array T as in A051168 (a count of Lyndon words).
4
0, 1, 3, 12, 40, 143, 497, 1768, 6288, 22610, 81686, 297160, 1086384, 3991995, 14732005, 54587280, 202995232, 757398510, 2834502346, 10637507400, 40023606896, 150946230006, 570534474698, 2160865067312, 8199711007200
OFFSET
0,3
COMMENTS
We have A051168(n,k) = (1/n) * Sum_{d | gcd(n,k)} mu(d) * binomial(n/d, k/d) for 0 <= k <= n with n > 0. If n is odd, gcd(2*n + 4, n) = 1. If n is even, gcd(2*n + 4, n) = 2 or 4, but mu(2) = -1 and mu(4) = 0. From these facts, we can prove the formula below. - Petros Hadjicostas, Jul 27 2020
FORMULA
a(n) = binomial(2*n + 4, n)/(2*n + 4), if n is odd, and a(n) = (binomial(2*n + 4, n) - binomial(n + 2, n/2))/(2*n + 4), if n is even. - Petros Hadjicostas, Jul 27 2020
D-finite with recurrence -(n+4) *(n+3) *(11*n-8)*a(n) +10 *(n+3) *(7*n^2+6*n-10) *a(n-1) -60 *n *(n^2-n-5)*a(n-2) -40 *n *(7*n^2+6*n-10) *a(n-3) +16*(n-1) *(13*n+4) *(2*n-3) *a(n-4)=0. - R. J. Mathar, Oct 28 2021
MAPLE
A050182 := proc(n)
binomial(2*n+4, n) ;
if type(n, 'even') then
%-binomial(n+2, n/2) ;
end if;
%/(2*n+4) ;
end proc:
seq(A050182(n), n=0..40) ; # R. J. Mathar, Oct 28 2021
CROSSREFS
A diagonal of the square array described in A051168.
Sequence in context: A289652 A026071 A102839 * A222610 A162970 A126725
KEYWORD
nonn
STATUS
approved