login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A126725
a(1)=0, a(2)=1; for n>2, a(n) = C(n,2)*(1+a(n-2)).
2
0, 1, 3, 12, 40, 195, 861, 5488, 31032, 247005, 1706815, 16302396, 133131648, 1483518127, 13978823145, 178022175360, 1901119947856, 27237392830233, 325091511083547, 5175104637744460, 68269217327545080, 1195449171318970491
OFFSET
1,3
COMMENTS
a(n) is also the maximum number of ways to place node pairs in an area formed by n 1 X 1 squares. - Theodore M. Mishura, Mar 20 2015
FORMULA
a(n) = A087214(n) - 1. - N. J. A. Sloane, Feb 15 2007
a(n) = Sum_{k=1..floor(n/2)} 2^k*Pochhammer(-n/2,k)*Pochhammer(1/2-n/2,k). - Theodore M. Mishura, Mar 16 2015
a(n) ~ n! * (exp(sqrt(2)) + (-1)^n * exp(-sqrt(2))) / 2^(n/2+1). - Vaclav Kotesovec, Mar 20 2015
MAPLE
seq(simplify(hypergeom([1, 1-n/2, 3/2-n/2], [], 2))*(n-1)*n/2, n=1..22); # Mark van Hoeij, May 12 2013
MATHEMATICA
nxt[{n_, a_, b_}]:={n+1, b, Binomial[n+1, 2](a+1)}; Transpose[NestList[nxt, {2, 0, 1}, 30]][[2]] (* Harvey P. Dale, Oct 12 2014 *)
PROG
(Magma) I:=[0, 1]; [n le 2 select I[n] else Binomial(n, 2)*(1+Self(n-2)): n in [1..35]]; // Vincenzo Librandi, Mar 17 2015
CROSSREFS
Cf. A087214.
Sequence in context: A050182 A222610 A162970 * A053043 A263102 A038345
KEYWORD
nonn
AUTHOR
Allan L. Edmonds (edmonds(AT)indiana.edu), Feb 13 2007
EXTENSIONS
Edited by Vladeta Jovovic, Feb 20 2009
STATUS
approved