login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A162970 Number of 2-cycles in all involutions of {1,2,...,n}. 7
0, 1, 3, 12, 40, 150, 546, 2128, 8352, 34380, 144100, 626736, 2784288, 12753832, 59692920, 286857600, 1407536896, 7069630608, 36217682352, 189489626560, 1010037302400, 5488251406176, 30348031302688, 170812160339712 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

LINKS

Alois P. Heinz, Table of n, a(n) for n = 1..300

FORMULA

a(n) = (1/2)*n*(n-1)*I(n-2) for n>=2, where I(n)=A000085(n) is the number of involutions of {1,2,...,n}.

Rec. rel.: a(n) = [n/(n-2)][a(n-1) + (n-1)a(n-2)], a(1)=0, a(2)=1.

E.g.f.: x^2/2 * exp(x+x^2/2).

a(n) ~ sqrt(2)/4 * n^(n/2+1)*exp(sqrt(n)-n/2-1/4) * (1-17/(24*sqrt(n))). - Vaclav Kotesovec, Aug 15 2013

EXAMPLE

a(3) = 3 because in (1)(2)(3), (1)(23), (12)(3), (13)(2) we have three 2-cycles.

MAPLE

a[1] := 0: a[2] := 1: for n from 3 to 27 do a[n] := n*(a[n-1]+(n-1)*a[n-2])/(n-2) end do: seq(a[n], n = 1 .. 27);

MATHEMATICA

Range[0, 20]! CoefficientList[ Series[x^2/2  Exp[x+x^2/2], {x, 0, 20}], x] // Rest

CROSSREFS

Cf. A000085, A013989.

Sequence in context: A102839 A050182 A222610 * A126725 A053043 A263102

Adjacent sequences:  A162967 A162968 A162969 * A162971 A162972 A162973

KEYWORD

nonn

AUTHOR

Emeric Deutsch, Jul 22 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 19 04:00 EDT 2022. Contains 356216 sequences. (Running on oeis4.)