login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(2n+3, n), array T as in A051168; a count of Lyndon words.
4

%I #26 Sep 17 2019 03:49:39

%S 0,1,3,9,30,99,333,1144,3978,13995,49742,178296,643842,2340135,

%T 8554275,31429026,115997970,429874830,1598952366,5967382200,

%U 22338765540,83859016527,315614844558,1190680751376,4501802223090,17055399281284

%N T(2n+3, n), array T as in A051168; a count of Lyndon words.

%H <a href="/index/Lu#Lyndon">Index entries for sequences related to Lyndon words</a>

%F Conjecture: -(n-1)*(n+3)*(n+2)*a(n) + 2*(3*n-4)*(n+2)*(n+1)*a(n-1) - 4*n*(n+1)*(2*n-5)*a(n-2) + 2*(n-1)*(n+2)*(2*n-3)*a(n-3) - 4*(2*n-5)*(3*n-4)*(n+1)*a(n-4) + 8*n*(2*n-5)*(2*n-7)*a(n-5) = 0. - _R. J. Mathar_, Jul 20 2016

%F From _Petros Hadjicostas_, Nov 16 2017: (Start)

%F a(n) = (1/(2*n+3))*Sum_{d|gcd(n,3)} mu(d)*binomial((2*n+3)/d, n/d). (This is a special case of A. Howroyd's formula for double array A051168.)

%F a(n) = (1/(2*n+3))*(binomial(2*n+3, n) - binomial((2*n/3)+1, n/3)) if 3|n; = (1/(2*n+3))*binomial(2*n+3, n) otherwise.

%F Using the above formulae, one can verify _R. J. Mathar_'s conjecture above.

%F (End)

%p A050181 := proc(n)

%p A051168(2*n+3,n) ;

%p end proc: # _R. J. Mathar_, Jul 20 2016

%t a[n_] := (1/(2n+3)) Sum[MoebiusMu[d] Binomial[(2n+3)/d, n/d], {d, Divisors[ GCD[n, 3]]}];

%t a /@ Range[0, 25] (* _Jean-François Alcover_, Sep 17 2019, from PARI *)

%o (PARI) a(n) = (1/(2*n+3))*sumdiv(gcd(n,3), d, moebius(d)*binomial((2*n+3)/d, n/d)); \\ _Michel Marcus_, Nov 18 2017

%Y Cf. A003441.

%Y A diagonal of the square array described in A051168.

%K nonn

%O 0,3

%A _Clark Kimberling_