login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A372949
a(n) = 2*f(2*n)/(f(n)*f(n+2)) where f = A003266.
0
1, 2, 8, 91, 2618, 199716, 39690618, 20689636692, 28215085220016, 100763710906257557, 942012688139052139766, 23056957423045790791793932, 1477460537993359748548214768630, 247860656992078740305125996374953260, 108861324945456389643061592667638024842480
OFFSET
1,2
COMMENTS
Fibonacci analog of the super ballot numbers.
a(n) is also the generalized FiboCatalan number for r=1. Proof that the formula always gives a positive integer can be found in a recent paper of K. Killpatrick. The sequence is the Fibonacci analog of the super ballot numbers given by Gessel (A007054). The sequence is also the Fibonacci analog of the generalized Catalan numbers, J_r*(2n)!/(n!*(n+r+1)!) where J_r=(2r+1)!/r!, for r=1. Gessel defined the generalized Catalan numbers and proved they are integers.
LINKS
Ira M. Gessel, Super ballot numbers, J. Symb. Comput. 14 (1992), 179-194.
Kendra Killpatrick, Super FiboCatalan Numbers and their Lucas Analogues, arXiv:2308.13457 [math.CO], (2023).
FORMULA
a(n) ~ 10 * phi^((n-3)*(n+1)) / A062073, where phi = A001622 is the golden ratio. - Vaclav Kotesovec, May 29 2024
EXAMPLE
a(5) = 2*f(10)/(f(5)*f(7)) = 2*122522400/(30*3120) = 2618, where f=A003266.
MATHEMATICA
a[n_]:=2Fibonorial[2n]/(Fibonorial[n]Fibonorial[n+2]); Array[a, 15] (* Stefano Spezia, May 23 2024 *)
CROSSREFS
Sequence in context: A294194 A067964 A102895 * A297451 A295773 A319125
KEYWORD
nonn
AUTHOR
Kendra Killpatrick, May 17 2024
STATUS
approved