login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A372952
a(n) = Sum_{1 <= x_1, x_2, x_3 <= n} n/gcd(x_1, x_2, x_3, n).
8
1, 15, 79, 239, 621, 1185, 2395, 3823, 6397, 9315, 14631, 18881, 28549, 35925, 49059, 61167, 83505, 95955, 130303, 148419, 189205, 219465, 279819, 302017, 388121, 428235, 518155, 572405, 707253, 735885, 923491, 978671, 1155849, 1252575, 1487295, 1528883
OFFSET
1,2
LINKS
FORMULA
a(n) = Sum_{d|n} mu(n/d) * (n/d) * sigma_4(d).
From Amiram Eldar, May 21 2024: (Start)
Multiplicative with a(p^e) = (p^(4*e+4) - p^(4*e+1) + p - 1)/(p^4-1).
Dirichlet g.f.: zeta(s)*zeta(s-4)/zeta(s-1).
Sum_{k=1..n} a(k) ~ c * n^5 / 5, where c = zeta(5)/zeta(4) = 0.958057374... . (End)
a(n) = Sum_{d|n} phi(n/d) * (n/d) * sigma_4(d^2)/sigma_2(d^2). - Seiichi Manyama, May 24 2024
a(n) = Sum_{1 <= x_1, x_2, x_3 <= n} ( gcd(x_1, x_2, n)/gcd(x_1, x_2, x_3, n) )^3. - Seiichi Manyama, May 25 2024
MATHEMATICA
f[p_, e_] := (p^(4*e+4) - p^(4*e+1) + p - 1)/(p^4-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, May 21 2024 *)
PROG
(PARI) a(n) = sumdiv(n, d, moebius(n/d)*n/d*sigma(d, 4));
CROSSREFS
Column k=3 of A372968.
Sequence in context: A212746 A212741 A082540 * A269657 A189922 A085808
KEYWORD
nonn,mult
AUTHOR
Seiichi Manyama, May 18 2024
STATUS
approved