login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A212746 Number of (w,x,y,z) with all terms in {0,...,n} and at least one of them is the range of {w,x,y,z}. 3
1, 15, 79, 225, 529, 975, 1711, 2625, 3985, 5535, 7711, 10065, 13249, 16575, 20959, 25425, 31201, 36975, 44335, 51585, 60721, 69615, 80719, 91425, 104689, 117375, 132991, 147825, 165985, 183135, 204031, 223665, 247489, 269775, 296719, 321825, 352081, 380175 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
For a guide to related sequences, see A211795.
LINKS
FORMULA
a(n) = n^4 - A212569(n).
a(n) = a(n-1)+3*a(n-2)-3*a(n-3)-3*a(n-5)+3*a(n-6)+a(n-7)-a(n-8).
G.f.: (1+14*x+61*x^2+104*x^3+115*x^4+50*x^5+15*x^6) / ((1+x)^3*(x-1)^4).
From Colin Barker, Jan 29 2016: (Start)
a(n) = (3*n*(10*n^2+n+(-1)^n*(n-1)+9)+2*((-1)^n+1))/4.
a(n) = (15*n^3+3*n^2+12*n+2)/2 for n even.
a(n) = (15*n^3+15*n)/2 for n odd.
(End)
EXAMPLE
For n=1, there are sixteen 4-tuples, (w,x,y,z); All but two include both 0 and 1 and have range 1. The two others, (0,0,0,0) and (1,1,1,1,), have range 0. Therefore, a(1)=15.
MATHEMATICA
Remove["Global`*"];
t = Compile[{{n, _Integer}},
Module[{s = 0}, (Do[
If[(w == # || x == # || y == # || z == #) &[
Max[w, x, y, z] - Min[w, x, y, z]], s++], {w, 0, n},
{x, 0, n}, {y, 0, n}, {z, 0, n}]; s)]];
Map[t[#] &, Range[0, 40]] (* A212746 *)
(* Peter J. C. Moses, May 24 2012 *)
LinearRecurrence[{1, 3, -3, -3, 3, 1, -1}, {1, 15, 79, 225, 529, 975, 1711}, 40] (* Harvey P. Dale, Oct 24 2018 *)
PROG
(PARI) Vec((1+14*x+61*x^2+104*x^3+115*x^4+50*x^5+15*x^6)/((1+x)^3*(x-1)^4) + O(x^100)) \\ Colin Barker, Jan 29 2016
CROSSREFS
Sequence in context: A269436 A044202 A044583 * A212741 A082540 A269657
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, May 27 2012
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 8 08:02 EST 2023. Contains 367662 sequences. (Running on oeis4.)