The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A212746 Number of (w,x,y,z) with all terms in {0,...,n} and at least one of them is the range of {w,x,y,z}. 3
 1, 15, 79, 225, 529, 975, 1711, 2625, 3985, 5535, 7711, 10065, 13249, 16575, 20959, 25425, 31201, 36975, 44335, 51585, 60721, 69615, 80719, 91425, 104689, 117375, 132991, 147825, 165985, 183135, 204031, 223665, 247489, 269775, 296719, 321825, 352081, 380175 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS For a guide to related sequences, see A211795. LINKS Colin Barker, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (1,3,-3,-3,3,1,-1). FORMULA a(n) = n^4 - A212569(n). a(n) = a(n-1)+3*a(n-2)-3*a(n-3)-3*a(n-5)+3*a(n-6)+a(n-7)-a(n-8). G.f.: (1+14*x+61*x^2+104*x^3+115*x^4+50*x^5+15*x^6) / ((1+x)^3*(x-1)^4). From Colin Barker, Jan 29 2016: (Start) a(n) = (3*n*(10*n^2+n+(-1)^n*(n-1)+9)+2*((-1)^n+1))/4. a(n) = (15*n^3+3*n^2+12*n+2)/2 for n even. a(n) = (15*n^3+15*n)/2 for n odd. (End) EXAMPLE For n=1, there are sixteen 4-tuples, (w,x,y,z); All but two include both 0 and 1 and have range 1. The two others, (0,0,0,0) and (1,1,1,1,), have range 0. Therefore, a(1)=15. MATHEMATICA Remove["Global`*"]; t = Compile[{{n, _Integer}}, Module[{s = 0}, (Do[ If[(w == # || x == # || y == # || z == #) &[ Max[w, x, y, z] - Min[w, x, y, z]], s++], {w, 0, n}, {x, 0, n}, {y, 0, n}, {z, 0, n}]; s)]]; Map[t[#] &, Range[0, 40]] (* A212746 *) (* Peter J. C. Moses, May 24 2012 *) LinearRecurrence[{1, 3, -3, -3, 3, 1, -1}, {1, 15, 79, 225, 529, 975, 1711}, 40] (* Harvey P. Dale, Oct 24 2018 *) PROG (PARI) Vec((1+14*x+61*x^2+104*x^3+115*x^4+50*x^5+15*x^6)/((1+x)^3*(x-1)^4) + O(x^100)) \\ Colin Barker, Jan 29 2016 CROSSREFS Cf. A211795, A212744. Sequence in context: A269436 A044202 A044583 * A212741 A082540 A269657 Adjacent sequences: A212743 A212744 A212745 * A212747 A212748 A212749 KEYWORD nonn,easy AUTHOR Clark Kimberling, May 27 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 8 08:02 EST 2023. Contains 367662 sequences. (Running on oeis4.)