login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A306444
A(n,k) = binomial((2*k+1)*n+2, k*n+1)/((2*k+1)*n+2), square array A(n,k) read by antidiagonals, for n >= 0, k >= 0.
4
1, 1, 1, 1, 2, 1, 1, 5, 7, 1, 1, 14, 66, 30, 1, 1, 42, 715, 1144, 143, 1, 1, 132, 8398, 49742, 22610, 728, 1, 1, 429, 104006, 2340135, 3991995, 482885, 3876, 1, 1, 1430, 1337220, 115997970, 757398510, 347993910, 10855425, 21318, 1
OFFSET
0,5
LINKS
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, ...
1, 2, 5, 14, 42, ...
1, 7, 66, 715, 8398, ...
1, 30, 1144, 49742, 2340135, ...
1, 143, 22610, 3991995, 757398510, ...
1, 728, 482885, 347993910, 267058714626, ...
1, 3876, 10855425, 32018897274, 99543581789652, ...
MATHEMATICA
A[n_, k_]:= Binomial[(2*k+1)*n+2, k*n+1]/((2*k+1)*n+2); Table[A[k, n-k], {n, 0, 12}, {k, 0, n}] (* G. C. Greubel, Feb 16 2019 *)
PROG
(PARI) {A(n, k) = binomial((2*k+1)*n+2, k*n+1)/((2*k+1)*n+2)};
for(n=0, 12, for(k=0, n, print1(A(k, n-k), ", "))) \\ G. C. Greubel, Feb 16 2019
(Magma) [[Binomial((2*(n-k)+1)*k+2, k*(n-k)+1)/((2*(n-k)+1)*k+2): k in [0..n]]: n in [0..12]]; // G. C. Greubel, Feb 16 2019
(Sage) [[binomial((2*(n-k)+1)*k+2, k*(n-k)+1)/((2*(n-k)+1)*k+2) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Feb 16 2019
(GAP) Flat(List([0..12], n-> List([0..n], k-> Binomial((2*(n-k)+1)*k+2, k*(n-k)+1)/((2*(n-k)+1)*k+2) ))); # G. C. Greubel, Feb 16 2019
CROSSREFS
Columns 0-1 give A000012, A006013.
Rows 0-5 give A000012, A000108(n+1), A065097(n+1), A265101, A265102, A265103.
Sequence in context: A064814 A051012 A064644 * A090210 A248925 A168131
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, Feb 15 2019
STATUS
approved