login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A265101
a(n) = binomial(6*n + 5, 3*n + 1)/(6*n + 5).
5
1, 30, 1144, 49742, 2340135, 115997970, 5967382200, 315614844558, 17055399281284, 937581428480312, 52267355178398304, 2947837630317717410, 167897169647656366330, 9643503773422181941740, 557939244828083793388560, 32486374828326106197187470
OFFSET
0,2
COMMENTS
Let x = p/q be a positive rational in reduced form with p,q > 0. Define Cat(x) = 1/(2*p + q)*binomial(2*p + q, p). Then Cat(n) = Catalan(n). This sequence is Cat(n + 1/3). Cf. A065097 (Cat(n + 1/2), A265102 (Cat(n + 1/4)) and A265103 (Cat(n + 1/5)).
Number of maximal faces of the rational associahedron Ass(3*n + 1, 3*n + 4). Number of lattice paths from (0, 0) to (3*n + 4, 3*n + 1) using steps of the form (1, 0) and (0, 1) and staying above the line y = (3*n + 1)/(3*n + 4)*x. See Armstrong et al.
LINKS
D. Armstrong, B. Rhoades, and N. Williams, Rational associahedra and noncrossing partitions arxiv:1305.7286v1 [math.CO], 2013.
FORMULA
a(n) = binomial(6*n + 5, 3*n + 1)/(6*n + 5).
(n + 1)*(3*n - 1)*(3*n + 4)*a(n) = 8*(2*n + 1)*(6*n + 1)*(6*n - 1)*a(n-1) with a(0) = 1.
From Ilya Gutkovskiy, Feb 28 2017: (Start)
O.g.f.: (3F2(-1/6,1/6,1/2; -1/3,4/3; 64*x) - 1)/(2*x).
E.g.f.: 3F3(5/6,7/6,3/2; 2/3,2,7/3; 64*x).
a(n) ~ 4^(3*n+2)/(3*sqrt(3*Pi)*n^(3/2)). (End)
MAPLE
seq(1/(6*n + 5)*binomial(6*n + 5, 3*n + 1), n = 0..15);
MATHEMATICA
Table[1/(6 n + 5) Binomial[6 n + 5, 3 n + 1], {n, 0, 20}] (* Vincenzo Librandi, Dec 09 2015 *)
PROG
(PARI) a(n) = binomial(6*n + 5, 3*n + 1)/(6*n + 5); \\ Altug Alkan, Dec 07 2015
(Magma) [Binomial(6*n+5, 3*n+1)/(6*n+5): n in [0..15]]; // Vincenzo Librandi, Dec 09 2015
(Sage) [binomial(6*n+5, 3*n+1)/(6*n+5) for n in (0..15)] # G. C. Greubel, Feb 16 2019
CROSSREFS
Row 3 of A306444.
Sequence in context: A269541 A280216 A075187 * A214820 A259462 A269682
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Dec 02 2015
STATUS
approved