login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A259462
From higher-order arithmetic progressions.
1
1, 30, 1200, 70000, 5880000, 691488000, 110638080000, 23471078400000, 6454546560000000, 2256222608640000000, 985518035453952000000, 529939925428193280000000, 346227417946419609600000000, 271655358696421539840000000000, 253338025938605687439360000000000, 278215820085776765945905152000000000, 356811789260008702325623357440000000000
OFFSET
0,2
COMMENTS
"3 over n!" in Dienger's article is A087047. A_1 is A000217. - Georg Fischer, Dec 16 2024
LINKS
Karl Dienger, Beiträge zur Lehre von den arithmetischen und geometrischen Reihen höherer Ordnung, Jahres-Bericht Ludwig-Wilhelm-Gymnasium Rastatt, Rastatt, 1910. [Annotated scanned copy]
FORMULA
D-finite with recurrence: -6*n*a(n) +(n+4)*(n+3)*(n+2)^2*a(n-1)=0. - R. J. Mathar, Jul 15 2015
a(n) = 2^(-n-3)*3^(-n-2)*(n+2)!*(n+3)!*(n+4)!/4*(n+2)*(n+1)/2. - Georg Fischer, Dec 16 2024
MAPLE
rXI := proc(n, a, d)
n*(n+1)*(n+2)/6*a+(n+2)*(n+1)*n*(n-1)/24*d;
end proc:
A259462 := proc(n)
mul(rXI(i, a, d), i=1..n+1) ;
coeftayl(%, d=0, 1) ;
coeftayl(%, a=0, n) ;
end proc:
seq(A259462(n), n=1..25) ; # R. J. Mathar, Jul 15 2015
MATHEMATICA
rXI[n_, a_, d_] := n(n+1)(n+2)/6*a + (n+2)(n+1)n(n-1)/24*d;
A259462[n_] :=
Product[rXI[i, a, d], {i, 1, n + 2}] //
SeriesCoefficient[#, {d, 0, 1}] & //
SeriesCoefficient[#, {a, 0, n + 1}] & ;
Table[A259462[n], {n, 0, 14}] (* Jean-François Alcover, Apr 27 2023, after R. J. Mathar *)
CROSSREFS
KEYWORD
nonn,changed
AUTHOR
N. J. A. Sloane, Jun 30 2015
STATUS
approved