OFFSET
0,3
COMMENTS
Product of the first n tetrahedral (or pyramidal) numbers. See 2nd formula. - Alexander Adamchuk, May 19 2006
From Peter Bala, Nov 28 2024: (Start)
For n >= 5, a(n-3) == 9 (mod n) if and only if n is a prime (adapt the proof of the Main Theorem in Himane).
The list of primes p such that a(p-3) == 9 (mod p^2) (analog of A007540 - Wilson primes) begins [11, 31, 47, ...]. (End)
LINKS
Karl Dienger, Beiträge zur Lehre von den arithmetischen und geometrischen Reihen höherer Ordnung, Jahres-Bericht Ludwig-Wilhelm-Gymnasium Rastatt, Rastatt, 1910. [Annotated scanned copy]
Djamel Himane, A simple proof of Werner Schulte's conjecture, arXiv:2404.08646 [math.GM], 2024
Ana Luzón, Manuel A. Morón, and José L. Ramírez, Differential Equations in Ward's Calculus, ResearchGate, September 2023.
Eric Weisstein's World of Mathematics, Tetrahedral Number.
FORMULA
a(n) = 2^(-n-1)*3^(-n)*n!*(n+1)!*(n+2)!.
From Alexander Adamchuk, May 19 2006: (Start)
a(n) = Product_{k=1..n} k*(k+1)*(k+2)/6.
a(n) = Product_{k=1..n} A000292(k). (End)
a(n) = denominator( [x^n] 1F3([1], [1, 2, 3], 6*x) ), where 1F3 is the hypergeometric function (see Luzón et al. at page 19). - Stefano Spezia, Oct 13 2023
EXAMPLE
a(4) = (1/32)*(1/81)*24*120*720 = 800.
MAPLE
a[0]:=1: for n from 1 to 20 do a[n]:=n*(n+1)*(n+2)*a[n-1]/6 od: seq(a[n], n=0..17); # Emeric Deutsch, Mar 06 2005
seq(mul(binomial(k+2, 3), k=1..n), n=0..16); # Zerinvary Lajos, Aug 07 2007
MATHEMATICA
Table[Product[k*(k+1)*(k+2)/6, {k, 1, n}], {n, 0, 16}] (* Alexander Adamchuk, May 19 2006 *)
a[n_]:=Denominator[SeriesCoefficient[HypergeometricPFQ[{1}, {1, 2, 3}, 6x], {x, 0, n}]]; Array[a, 18, 0] (* Stefano Spezia, Oct 13 2023 *)
PROG
(Sage)
q=50 # change q for more terms
[2^(-n-1)*3^(-n)*factorial(n)*factorial(n+1)*factorial(n+2) for n in [0..q]] # Tom Edgar, Mar 15 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Enrico T. Federighi (rico125162(AT)aol.com), Aug 08 2003
EXTENSIONS
More terms from Emeric Deutsch, Mar 06 2005
Example and formula corrected by Tom Edgar, Mar 15 2014
a(0)=1 prepended by and a(15)-a(17) from Stefano Spezia, Oct 13 2023
STATUS
approved