login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A087049
Characteristic sequence for numbers n>=0 that are either squares or have a square > 1 as factor.
4
1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1
OFFSET
0,1
COMMENTS
a(0)=1, a(1)=1, n>=2: a(n)=1 if isquarefree(n)=false else 0.
Except for a(0)=1 and a(1)=1 this is the bit-flipped unsigned Moebius sequence abs(A008683(n)), n>=2.
For n>=2: a(n)=1 iff n is from A013929 (not squarefree).
FORMULA
a(n) = 1 if n is a perfect square (A000290) or has some square > 1 as a factor, else 0.
a(0) = a(1) = 1; for n > 1, a(n) = 1 - A008966(n). - Antti Karttunen, Nov 17 2017
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=0..m} a(k) = 1 - 6/Pi^2 (A229099). - Amiram Eldar, Jan 19 2024
EXAMPLE
a(4) = 1 because 4 is a square; a(8) = 1 because 8 = 2^2 * 2.
MAPLE
1, 1, seq(`if`(numtheory:-issqrfree(n), 0, 1), n=2..100); # Robert Israel, Nov 17 2017
MATHEMATICA
Array[If[# <= 1, 1, 1 - Abs@ MoebiusMu@ #] &, 105, 0] (* Michael De Vlieger, Nov 17 2017 *)
PROG
(PARI) A087049(n) = if(n<=1, 1, 1-abs(moebius(n))); \\ Antti Karttunen, Nov 17 2017
CROSSREFS
Cf. A008683, A008966, A080733, A000290 (squares), A013929 (not squarefree), A229099.
Sequence in context: A190610 A095901 A374036 * A358680 A186447 A118009
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Sep 08 2003
STATUS
approved