|
|
A259464
|
|
From higher-order arithmetic progressions.
|
|
1
|
|
|
75, 21875, 5512500, 1512630000, 484041600000, 184834742400000, 84715923600000000, 46534591303200000000, 30489464221856640000000, 23681690417572387200000000, 21660852835272876825600000000, 23175597788788462617600000000000, 28817200450516396946227200000000000
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
LINKS
|
|
|
FORMULA
|
Conjecture: -6*n*(n+2)*a(n) +(n+6)*(n+5)*(n+4)^3*a(n-1)=0. - R. J. Mathar, Jul 15 2015
|
|
MAPLE
|
rXI := proc(n, a, d)
n*(n+1)*(n+2)/6*a+(n+2)*(n+1)*n*(n-1)/24*d;
end proc:
mul(rXI(i, a, d), i=1..n+3) ;
coeftayl(%, d=0, 3) ;
coeftayl(%, a=0, n) ;
end proc:
|
|
MATHEMATICA
|
rXI[n_, a_, d_] := (n(n+1)(n+2)/6)*a+((n+2)(n+1)n(n-1)/24)*d;
Product[rXI[i, a, d], {i, 1, n+4}]//
SeriesCoefficient[#, {d, 0, 3}]&//
SeriesCoefficient[#, {a, 0, n+1}]&;
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|