login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

From higher-order arithmetic progressions.
3

%I #20 Dec 16 2024 14:40:30

%S 75,21875,5512500,1512630000,484041600000,184834742400000,

%T 84715923600000000,46534591303200000000,30489464221856640000000,

%U 23681690417572387200000000,21660852835272876825600000000,23175597788788462617600000000000,28817200450516396946227200000000000

%N From higher-order arithmetic progressions.

%C "3 over n!" on page 15 in the Dienger article is A087047; A_3 is A001303. - Georg Fischer, Dec 16 2024

%H Karl Dienger, <a href="/A000217/a000217.pdf">Beiträge zur Lehre von den arithmetischen und geometrischen Reihen höherer Ordnung</a>, Jahres-Bericht Ludwig-Wilhelm-Gymnasium Rastatt, Rastatt, 1910. [Annotated scanned copy]

%F D-finite with recurrence: -6*n*(n+2)*a(n) +(n+6)*(n+5)*(n+4)^3*a(n-1)=0. - _R. J. Mathar_, Jul 15 2015

%F a(n) = 2^(-n-5)*3^(-n-4)*(n+4)!*(n+5)!*(n+6)!*(n+4)^2*(n+3)^2*(n+2)*(n+1)/3072. - _Georg Fischer_, Dec 16 2024

%p rXI := proc(n, a, d)

%p n*(n+1)*(n+2)/6*a+(n+2)*(n+1)*n*(n-1)/24*d;

%p end proc:

%p A259464 := proc(n)

%p mul(rXI(i, a, d), i=1..n+3) ;

%p coeftayl(%, d=0, 3) ;

%p coeftayl(%, a=0, n) ;

%p end proc:

%p seq(A259464(n), n=1..25) ; # _R. J. Mathar_, Jul 15 2015

%t rXI[n_, a_, d_] := (n(n+1)(n+2)/6)*a+((n+2)(n+1)n(n-1)/24)*d;

%t A259464[n_] :=

%t Product[rXI[i, a, d], {i, 1, n+4}]//

%t SeriesCoefficient[#, {d, 0, 3}]&//

%t SeriesCoefficient[#, {a, 0, n+1}]&;

%t Table[A259464[n], {n, 0, 12}] (* _Jean-François Alcover_, Apr 26 2023, after _R. J. Mathar_ *)

%Y Cf. A001303, A087047, A259462, A259463.

%K nonn

%O 0,1

%A _N. J. A. Sloane_, Jun 30 2015