login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A269471
Number of length-7 0..n arrays with no repeated value equal to the previous repeated value.
1
30, 1206, 11796, 63420, 242370, 741090, 1934856, 4488696, 9499590, 18678990, 34580700, 60879156, 102703146, 167030010, 263145360, 403173360, 602682606, 881372646, 1263846180, 1780471980, 2468343570, 3372338706, 4546284696
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = n^7 + 7*n^6 + 16*n^5 + 8*n^4 - n^3 - n.
Conjectures from Colin Barker, Jan 23 2019: (Start)
G.f.: 6*x*(5 + 161*x + 498*x^2 + 190*x^3 - 23*x^4 + 9*x^5) /(1 - x)^8.
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) for n>8.
(End)
EXAMPLE
Some solutions for n=3:
..2. .0. .0. .0. .1. .1. .0. .0. .0. .1. .3. .0. .2. .3. .3. .0
..0. .2. .2. .3. .2. .3. .1. .2. .2. .2. .2. .1. .1. .3. .3. .1
..2. .2. .1. .0. .2. .1. .3. .2. .2. .2. .3. .0. .1. .1. .0. .3
..3. .0. .2. .3. .0. .2. .2. .0. .3. .3. .0. .2. .3. .0. .1. .0
..1. .1. .3. .2. .0. .3. .2. .0. .3. .2. .1. .2. .2. .2. .1. .0
..0. .1. .2. .0. .2. .3. .0. .1. .2. .3. .3. .3. .2. .1. .2. .3
..3. .2. .3. .1. .1. .2. .0. .0. .1. .1. .2. .1. .3. .3. .2. .3
CROSSREFS
Row 7 of A269467.
Sequence in context: A214820 A259462 A269682 * A060076 A174716 A163521
KEYWORD
nonn
AUTHOR
R. H. Hardin, Feb 27 2016
STATUS
approved