login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A269473
a(n) is the number of rooted 2n-face triangulations in an orientable surface of genus 1.
2
1, 28, 664, 14912, 326496, 7048192, 150820608, 3208396800, 67968706048, 1435486650368, 30246600953856, 636154755940352, 13360333295173632, 280258138588839936, 5873204471357374464, 122980760637407232000, 2573349967992101142528, 53815038103588370907136
OFFSET
1,2
LINKS
I. P. Goulden and D. M. Jackson, The KP hierarchy, branched covers, and triangulations, Advances in Mathematics, Volume 219, Issue 3, 20 October 2008, Pages 932-951.
Evgeniy Krasko, Alexander Omelchenko, Enumeration of r-regular Maps on the Torus. Part I: Enumeration of Rooted and Sensed Maps, arXiv:1709.03225 [math.CO], 2017.
Evgeniy Krasko, Alexander Omelchenko, Enumeration of r-regular maps on the torus. Part I: Rooted maps on the torus, the projective plane and the Klein bottle. Sensed maps on the torus, Discrete Mathematics, Volume 342, Issue 2, February 2019, Pages 584-599.
FORMULA
Recurrence: (n-1)*n*(15*n - 46)*a(n) = 48*(270*n^3 - 1503*n^2 + 2478*n - 1280)*a(n-2) - 20736*(3*n - 10)*(3*n - 8)*(15*n - 16)*a(n-4).
a(n) ~ 2^(2*n-3) * 3^(3*n/2).
From Gheorghe Coserea, Jul 27 2018: (Start)
a(n+1) = 4^n * n!!/(n+1)! * Sum_{k=0..n} 3^k*(3*n-2*k+1)!!/(n-k)!. (see Krasko link)
G.f. y(x) satisfies:
0 = 2*(432*x^2 - 1)^2*y^3 + (432*x^2 - 1)*y^2 + 54*x^2*y + x^2.
0 = x*(432*x^2 - 1)*(108*x^2 + 1)*deriv(y,x) + 2*(432*x^2 - 1)*(648*x^2 + 1)*y^2 + (31104*x^4 + 1116*x^2 + 1)*y + 30*x^2.
0 = (5184*x^2 - 7)*(432*x^2 - 1)^2*y''' + 1296*x*(432*x^2 - 1)*(12096*x^2 - 13)*y'' + 48*(199314432*x^4 - 479088*x^2 + 581)*y' + 663552*x*(2592*x^2 - 11)*y.
(End)
MATHEMATICA
Rest[CoefficientList[InverseSeries[Series[Sqrt[1728 - 432/x + (30*Sqrt[1 + 48*x] - 54)/x^2 + (Sqrt[1 + 48*x] - 1)/x^3]/864, {x, 0, 20}], x], x]] (* Vaclav Kotesovec, Jul 28 2018 *)
PROG
(PARI)
factorial2(n) = my(x = (2^(n\2)*(n\2)!)); if (n%2, n!/x, x);
a(n) = {
my(f2 = factorial2);
4^(n-1)*f2(n-1)/n! * sum(k=0, n-1, 3^k * f2(3*n-2*k-2)/(n-1-k)!);
};
\\ test: y='x*Ser(vector(303, n, a(n))); 0 == 2*(432*x^2 - 1)^2*y^3 + (432*x^2 - 1)*y^2 + 54*x^2*y + x^2
\\ Gheorghe Coserea, Jul 27 2018
CROSSREFS
Column k=1 of A266240.
Sequence in context: A070310 A309804 A236753 * A278805 A160141 A331476
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Feb 27 2016
STATUS
approved