login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A090210
Triangle of certain generalized Bell numbers.
11
1, 1, 1, 2, 1, 1, 5, 7, 1, 1, 15, 87, 34, 1, 1, 52, 1657, 2971, 209, 1, 1, 203, 43833, 513559, 163121, 1546, 1, 1, 877, 1515903, 149670844, 326922081, 12962661, 13327, 1, 1, 4140, 65766991, 66653198353, 1346634725665, 363303011071, 1395857215, 130922, 1, 1
OFFSET
1,4
COMMENTS
Let B_{n}(x) = sum_{j>=0}(exp(j!/(j-n)!*x-1)/j!) and
S(n,k) = k! [x^k] taylor(B_{n}(x)), where [x^k] denotes the
coefficient of x^k in the Taylor series for B_{n}(x).
Then S(n,k) (n>0, k>=0) is the square array representation of the triangle.
To illustrate the cross-references of T(n,k) when written as a square array.
0: A000012: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1: A000110: 1, 1, 2, 5, 15, 52, 203, 877, 4140, ...
2: A020556: 1, 1, 7, 87, 1657, 43833, 1515903, ...
3: A069223: 1, 1, 34, 2971, 513559, 149670844, ...
4: A071379: 1, 1, 209, 163121, 326922081, ...
5: A090209: 1, 1, 1546, 12962661, 363303011071,...
6: ... 1, 1, 13327, 1395857215, 637056434385865,...
Note that the sequence T(0,k) is not included in the data.
- Peter Luschny, Mar 27 2011
REFERENCES
P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, Phys. Lett. A 309 (2003) 198-205.
M. Schork, On the combinatorics of normal ordering bosonic operators and deforming it, J. Phys. A 36 (2003) 4651-4665.
LINKS
P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem.
W. Lang, First 8 rows.
K. A. Penson, P. Blasiak, A. Horzela, A. I. Solomon and G. H. E. Duchamp,Laguerre-type derivatives: Dobinski relations and combinatorial identities, J. Math. Phys. 50, 083512 (2009).
FORMULA
a(n, m) = Bell(m;n-(m-1)), n>= m-1 >=0, with Bell(m;k) := Sum_{p=m..m*k} S2(m;k, p), where S2(m;k, p) := (((-1)^p)/p!) * Sum_{r=m..p} ((-1)^r)*binomial(p, r)*fallfac(r, m)^k; with fallfac(n, m) := A008279(n, m) (falling factorials) and m<=p<=k*m, k>=1, m=1, 2, ..., else 0. From eqs.(6) with r=s->m and eq.(19) with S_{r, r}(n, k)-> S2(r;n, k) of the Blasiak et al. reference. [Corrected by Sean A. Irvine, Jun 03 2024]
a(n, m) = (Sum_{k>=m} fallfac(k, m)^(n-(m-1)))/exp(1), n>=m-1>=0, else 0. From eq.(26) with r->m of the Schork reference which is rewritten eq.(11) of the original Blasiak et al. reference.
E.g.f. m-th column (no leading zeros): (Sum_{k>=m} exp(fallfac(k, m)*x)/k!) + A000522(m)/m!)/exp(1). Rewritten from the top of p. 4656 of the Schork reference.
EXAMPLE
Triangle begins:
1;
1, 1;
2, 1, 1;
5, 7, 1, 1;
15, 87, 34, 1, 1;
52, 1657, 2971, 209, 1, 1;
203, 43833, 513559, 163121, 1546, 1, 1;
MAPLE
A090210_AsSquareArray := proc(n, k) local r, s, i;
if k=0 then 1 else r := [seq(n+1, i=1..k-1)]; s := [seq(1, i=1..k-1)];
exp(-x)*n!^(k-1)*hypergeom(r, s, x); round(evalf(subs(x=1, %), 99)) fi end:
seq(lprint(seq(A090210_AsSquareArray(n, k), k=0..6)), n=0..6);
# Peter Luschny, Mar 30 2011
MATHEMATICA
t[n_, k_] := t[n, k] = Sum[(n+j)!^(k-1)/(j!^k*E), {j, 0, Infinity}]; t[_, 0] = 1;
Flatten[ Table[ t[n-k+1, k], {n, 0, 8}, {k, n, 0, -1}]][[1 ;; 43]] (* Jean-François Alcover, Jun 17 2011 *)
KEYWORD
nonn,easy,tabl
AUTHOR
Wolfdieter Lang, Dec 01 2003
STATUS
approved