The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A090213 Alternating row sums of array A090214 ((4,4)-Stirling2). 1
 1, -15, 1169, -154079, -148969375, 778633335441, -4003896394897551, 27901641934428560705, -268555885416357907647039, 3460225909437698652973995569, -56404253763542830420650221273263, 1050004356721541004548911018674177377 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 REFERENCES P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, Phys. Lett. A 309 (2003) 198-205. M. Schork, On the combinatorics of normal ordering bosonic operators and deforming it, J. Phys. A 36 (2003) 4651-4665. LINKS P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem. FORMULA a(n) := sum( A090214(n, k)*(-1)^k, k=4..4*n), n>=1. a(0) := 1 may be added. a(n) = sum(((-1)^k)*(fallfac(k, 4)^n)/k!, k=4..infinity)*exp(1), with fallfac(k, 4)=A008279(k, 4)=k*(k-1)*(k-2)*(k-3) and n>=1. This produces also a(0)=1. E.g.f. if a(0)=1 is added: exp(1)*(sum(((-1)^k)*exp(fallfac(k, 4)*x)/k!, k=4..infinity) + A000166(3)/3!). with the subfactorials A000166. A000166(3)/3!=1/3. Similar to derivation on top of p. 4656 of the Schork reference. MATHEMATICA a[n_] := Sum[(-1)^k FactorialPower[k, 4]^n/k!, {k, 2, Infinity}]*E; Array[a, 12] (* Jean-François Alcover, Sep 01 2016 *) CROSSREFS Cf. A000587, A090211-2. A071379 (non-alternating sum, generalized Bell-numbers). Sequence in context: A266581 A337677 A098210 * A230669 A027492 A001728 Adjacent sequences:  A090210 A090211 A090212 * A090214 A090215 A090216 KEYWORD sign,easy AUTHOR Wolfdieter Lang, Dec 01 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 22 16:30 EST 2022. Contains 350484 sequences. (Running on oeis4.)