The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A337677 a(0) = 1; a(n) = -(n!)^4 * Sum_{k=0..n-1} a(k) / (k! * (n-k))^4. 2
 1, -1, 15, -1150, 277760, -164021776, 200693093392, -455136213439776, 1760342776470958080, -10907982472777142353920, 103006437933467240856354816, -1424284967682216438413265543168, 27890228890526992620507064048877568, -752281114397558490715695708227012591616 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS FORMULA Sum_{n>=0} a(n) * x^n / (n!)^4 = 1 / (1 + polylog(4,x)). MATHEMATICA a[0] = 1; a[n_] := a[n] = -(n!)^4 Sum[a[k]/(k! (n - k))^4, {k, 0, n - 1}]; Table[a[n], {n, 0, 13}] nmax = 13; CoefficientList[Series[1/(1 + PolyLog[4, x]), {x, 0, nmax}], x] Range[0, nmax]!^4 PROG (PARI) a(n)={n!^4*polcoef(1/(1 + polylog(4, x + O(x*x^n))), n)} \\ Andrew Howroyd, Sep 15 2020 CROSSREFS Cf. A006252, A074706, A212857, A336260, A337676, A337678. Sequence in context: A027552 A212857 A266581 * A098210 A090213 A230669 Adjacent sequences:  A337674 A337675 A337676 * A337678 A337679 A337680 KEYWORD sign AUTHOR Ilya Gutkovskiy, Sep 15 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 20 19:03 EST 2022. Contains 350472 sequences. (Running on oeis4.)