OFFSET
0,3
COMMENTS
Generalized Bell numbers: a(n) = Sum_{k=2..2*n} A078739(n,k), n >= 1.
Let B_{m}(x) = Sum_{j>=0} exp(j!/(j-m)!*x-1)/j! then
a(n) = n! [x^n] taylor(B_{2}(x)), where [x^n] denotes the coefficient of x^n in the Taylor series for B_{2}(x). a(n) is row 2 of the square array representation of A090210. - Peter Luschny, Mar 27 2011
Also the number of set partitions of {1,2,...,2n+1} such that the block |n+1| is a part but no block |m| with m < n+1. - Peter Luschny, Apr 03 2011
REFERENCES
G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..288
P. Blasiak, K. A. Penson and A. I. Solomon, The Boson Normal Ordering Problem and Generalized Bell Numbers, arXiv:quant-ph/0212072, 2002.
P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, Phys. Lett. A 309 (2003) 198-205.
P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, arXiv:quant-ph/0402027, 2004.
P. Codara, O. M. D'Antona, P. Hell, A simple combinatorial interpretation of certain generalized Bell and Stirling numbers, arXiv preprint arXiv:1308.1700 [cs.DM], 2013.
G. Labelle, Counting enriched multigraphs according to the number of their edges (or arcs), Discrete Math., 217 (2000), 237-248.
Peter Luschny, Set partitions
G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004. [Cached copy, with permission]
M. Riedel, Set partitions of unique elements from an n-by-m matrix where elements from the same row may not be in the same partition, Mathematics Stack Exchange.
M. Schork, On the combinatorics of normal ordering bosonic operators and deforming it, J. Phys. A 36 (2003) 4651-4665.
FORMULA
a(n) = e*Sum_{k>=0} ((k+2)!^n/(k+2)!)*(k!^n), n>=1.
a(n) = (1/e)*Sum_{k>=2} (k*(k-1))^n/k!, n >= 1. a(0) := 1. (From eq.(26) with r=2 of the Schork reference.)
E.g.f.: (1/e)*(2 + Sum_{k>=2} ((exp(k*(k-1)*x))/k!)) (from top of p. 4656 of the Schork reference).
a(n) = Sum_{k=0..n} (-1)^k*binomial(n, k)*Bell(2*n-k). - Vladeta Jovovic, May 02 2004
a(n) = A095149(2n,n). - Alois P. Heinz, Dec 20 2018
EXAMPLE
Example: For n = 2 the a(2) = 7 are the number of set partitions of 5 such that the block |3| is a part but no block |m| with m < 3: 3|1245, 3|4|125, 3|5|124, 3|12|45, 3|14|25, 3|15|24, 3|4|5|12. - Peter Luschny, Apr 05 2011
MAPLE
A020556 := proc(n) local k;
add((-1)^(n+k)*binomial(n, k)*combinat[bell](n+k), k=0..n) end:
seq(A020556(n), n=0..17); # Peter Luschny, Mar 27 2011
# Uses floating point arithmetic, increase working precision for large n.
A020556 := proc(n) local r, s, i;
if n=0 then 1 else r := [seq(3, i=1..n-1)]; s := [seq(1, i=1..n-1)];
exp(-x)*2^(n-1)*hypergeom(r, s, x); round(evalf(subs(x=1, %), 99)) fi end:
seq(A020556(n), n=0..15); # Peter Luschny, Mar 30 2011
T := proc(n, k) option remember;
if n = 1 then 1
elif n = k then T(n-1, 1) - T(n-1, n-1)
else T(n-1, k) + T(n, k+1) fi end:
A020556 := n -> T(2*n+1, n+1);
seq(A020556(n), n = 0..99); # Peter Luschny, Apr 03 2011
MATHEMATICA
f[n_] := f[n] = Sum[(k + 2)!^n/((k + 2)!*(k!^n)*E), {k, 0, Infinity}]; Table[ f[n], {n, 1, 16}]
(* Second program: *)
a[n_] := Sum[(-1)^k*Binomial[n, k]*BellB[2n-k], {k, 0, n}]; Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Jul 11 2017, after Vladeta Jovovic *)
PROG
(PARI) a(n)={my(bell=serlaplace(exp(exp(x + O(x^(2*n+1)))-1))); sum(k=0, n, (-1)^k*binomial(n, k)*polcoef(bell, 2*n-k))} \\ Andrew Howroyd, Jan 13 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Gilbert Labelle (gilbert(AT)lacim.uqam.ca) and Simon Plouffe
EXTENSIONS
Edited by Robert G. Wilson v, Apr 30 2002
STATUS
approved