login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A182930
Triangle read by rows: Number of set partitions of {1,2,..,n} such that |k| is a block and no block |m| with m < k exists, (1 <= n, 1 <= k <= n).
3
1, 1, 0, 2, 1, 1, 5, 3, 2, 1, 15, 10, 7, 5, 4, 52, 37, 27, 20, 15, 11, 203, 151, 114, 87, 67, 52, 41, 877, 674, 523, 409, 322, 255, 203, 162, 4140, 3263, 2589, 2066, 1657, 1335, 1080, 877, 715, 21147, 17007, 13744, 11155, 9089, 7432, 6097, 5017, 4140, 3425
OFFSET
1,4
COMMENTS
Mirror image of A106436. - Alois P. Heinz, Jan 29 2019
LINKS
Peter Luschny, Set partitions
FORMULA
Recursion: The value of T(n,k) is, if n < 0 or k < 0 or k > n undefined, else if n = 1 then 1 else if k = n then T(n-1,1) - T(n-1,n-1); in all other cases T(n,k) = T(n,k+1) + T(n-1,k).
EXAMPLE
T(4,2) = card({2|134, 2|3|14, 2|4|13}) = 3.
[1] 1,
[2] 1, 0,
[3] 2, 1, 1,
[4] 5, 3, 2, 1,
[5] 15, 10, 7, 5, 4,
[6] 52, 37, 27, 20, 15, 11,
[-1-] [-2-] [-3-] [-4-] [-5-] [-6-]
MAPLE
T := proc(n, k) option remember; if n = 1 then 1 elif n = k then T(n-1, 1) - T(n-1, n-1) else T(n-1, k) + T(n, k+1) fi end:
A182930 := (n, k) -> T(n, k); seq(print(seq(A182930(n, k), k=1..n)), n=1..6);
MATHEMATICA
T[n_, k_] := T[n, k] = Which[n == 1, 1, n == k, T[n-1, 1] - T[n-1, n-1], True, T[n-1, k] + T[n, k+1]];
Table[T[n, k], {n, 1, 10}, {k, 1, n}] (* Jean-François Alcover, Jun 22 2019 *)
CROSSREFS
T(2n+1,n+1) gives A020556.
Sequence in context: A264698 A263296 A259862 * A372725 A232187 A076241
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Apr 08 2011
STATUS
approved