login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A232187
Number T(n,k) of parity alternating permutations of [n] with exactly k descents from odd to even numbers; triangle T(n,k), n>=0, 0<=k<=max(0,floor((n-1)/2)), read by rows.
2
1, 1, 2, 1, 1, 5, 3, 2, 8, 2, 20, 44, 8, 6, 66, 66, 6, 114, 594, 414, 30, 24, 624, 1584, 624, 24, 864, 8784, 14544, 4464, 144, 120, 6840, 36240, 36240, 6840, 120, 8280, 147720, 471120, 353520, 55320, 840, 720, 86400, 857520, 1739520, 857520, 86400, 720, 96480
OFFSET
0,3
COMMENTS
T(2n+1,k) = T(2n+1,n-k).
T(2n+2,n) = T(2n+1,n) + T(2n+3,n+1).
LINKS
FORMULA
T(2n+1,k) = n! * A173018(n+1,k) = A000142(n) * A173018(n+1,k).
EXAMPLE
T(5,0) = 2: 12345, 34125.
T(5,1) = 8: 12543, 14325, 14523, 32145, 34521, 52143, 52341, 54123.
T(5,2) = 2: 32541, 54321.
T(6,2) = 8: 163254, 165432, 321654, 325416, 541632, 543216, 632541, 654321.
T(7,0) = 6: 1234567, 1256347, 3412567, 3456127, 5612347, 5634127.
T(7,1) = 66: 1234765, 1236547, 1236745, ..., 7456123, 7612345, 7634125.
T(7,2) = 66: 1254763, 1276543, 1432765, ..., 7652143, 7652341, 7654123.
T(7,3) = 6: 3254761, 3276541, 5432761, 5476321, 7632541, 7654321.
Triangle T(n,k) begins:
: 0 : 1;
: 1 : 1;
: 2 : 2;
: 3 : 1, 1;
: 4 : 5, 3;
: 5 : 2, 8, 2;
: 6 : 20, 44, 8;
: 7 : 6, 66, 66, 6;
: 8 : 114, 594, 414, 30;
: 9 : 24, 624, 1584, 624, 24;
: 10 : 864, 8784, 14544, 4464, 144;
: 11 : 120, 6840, 36240, 36240, 6840, 120;
CROSSREFS
Column k=0 gives: A199660.
Row sums give: A092186 (for n>0).
T(2n+1,n) = A000142(n).
T(2n+2,n) = A001048(n+1).
Sequence in context: A259862 A182930 A372725 * A076241 A316399 A139347
KEYWORD
nonn,tabf
AUTHOR
Alois P. Heinz, Nov 20 2013
STATUS
approved