

A259862


Triangle read by rows: T(n,k) = number of unlabeled graphs with n nodes and connectivity exactly k (n>=1, 0<=k<=n1).


42



1, 1, 1, 2, 1, 1, 5, 3, 2, 1, 13, 11, 7, 2, 1, 44, 56, 39, 13, 3, 1, 191, 385, 332, 111, 21, 3, 1, 1229, 3994, 4735, 2004, 345, 34, 4, 1, 13588, 67014, 113176, 66410, 13429, 992, 54, 4, 1, 288597, 1973029, 4629463, 3902344, 1109105, 99419, 3124, 81, 5, 1, 12297299, 105731474, 327695586, 388624106, 162318088, 21500415, 820956, 9813, 121, 5, 1
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,4


COMMENTS

These are vertexconnectivities. Spanning edgeconnectivity is A263296. Nonspanning edgeconnectivity is A327236. Cutconnectivity is A327127.  Gus Wiseman, Sep 03 2019


LINKS



EXAMPLE

Triangle begins:
1;
1, 1;
2, 1, 1;
5, 3, 2, 1;
13, 11, 7, 2, 1;
44, 56, 39, 13, 3, 1;
191, 385, 332, 111, 21, 3, 1;
1229, 3994, 4735, 2004, 345, 34, 4, 1;
13588, 67014, 113176, 66410, 13429, 992, 54, 4, 1;
288597, 1973029, 4629463, 3902344, 1109105, 99419, 3124, 81, 5, 1;
12297299,105731474,327695586,388624106,162318088,21500415,820956,9813,121,5,1;
...


CROSSREFS

Columns k=0..10 (up to initial nonzero terms) are A000719, A052442, A052443, A052444, A052445, A324234, A324235, A324088, A324089, A324090, A324091.


KEYWORD



AUTHOR



STATUS

approved



