OFFSET
0,5
COMMENTS
A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every finite set of finite nonempty sets has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18.
Elements of a set-system are sometimes called edges. The cut-connectivity of a set-system is the minimum number of vertices that must be removed (together with any resulting empty or duplicate edges) to obtain a disconnected or empty set-system. Except for cointersecting set-systems (A326853), this is the same as vertex-connectivity (A327051).
EXAMPLE
Positions of first appearances of each integer, together with the corresponding set-systems, are:
0: {}
1: {{1}}
4: {{1,2}}
52: {{1,2},{1,3},{2,3}}
2868: {{1,2},{1,3},{2,3},{1,4},{2,4},{3,4}}
MATHEMATICA
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n, 2]], 1];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]], 2], And[OrderedQ[#], UnsameQ@@#, Length[Intersection@@s[[#]]]>0]&]}, If[c=={}, s, csm[Sort[Append[Delete[s, List/@c[[1]]], Union@@s[[c[[1]]]]]]]]];
vertConn[y_]:=If[Length[csm[bpe/@y]]!=1, 0, Min@@Length/@Select[Subsets[Union@@bpe/@y], Function[del, Length[csm[DeleteCases[DeleteCases[bpe/@y, Alternatives@@del, {2}], {}]]]!=1]]];
Table[vertConn[bpe[n]], {n, 0, 100}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jul 25 2019
STATUS
approved