The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A326786 Cut-connectivity of the set-system with BII-number n. 30
 0, 1, 1, 0, 2, 2, 2, 2, 1, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 1, 1, 1, 1, 2, 2, 0, 0, 1, 1, 1, 1, 2, 0, 2, 0, 1, 1, 1, 1, 2, 0, 2, 0, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 3, 1, 1, 1, 1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every finite set of finite nonempty sets has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges. The cut-connectivity of a set-system is the minimum number of vertices that must be removed (together with any resulting empty or duplicate edges) to obtain a disconnected or empty set-system. Except for cointersecting set-systems (A326853), this is the same as vertex-connectivity (A327051). LINKS EXAMPLE Positions of first appearances of each integer, together with the corresponding set-systems, are:      0: {}      1: {{1}}      4: {{1,2}}     52: {{1,2},{1,3},{2,3}}   2868: {{1,2},{1,3},{2,3},{1,4},{2,4},{3,4}} MATHEMATICA bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n, 2]], 1]; csm[s_]:=With[{c=Select[Tuples[Range[Length[s]], 2], And[OrderedQ[#], UnsameQ@@#, Length[Intersection@@s[[#]]]>0]&]}, If[c=={}, s, csm[Sort[Append[Delete[s, List/@c[[1]]], Union@@s[[c[[1]]]]]]]]]; vertConn[y_]:=If[Length[csm[bpe/@y]]!=1, 0, Min@@Length/@Select[Subsets[Union@@bpe/@y], Function[del, Length[csm[DeleteCases[DeleteCases[bpe/@y, Alternatives@@del, {2}], {}]]]!=1]]]; Table[vertConn[bpe[n]], {n, 0, 100}] CROSSREFS Cf. A000120, A013922, A029931, A048793, A070939, A305078, A322388, A322389 (same for MM-numbers), A322390, A326031, A326701, A326749, A326753, A326787 (edge-connectivity), A327051 (vertex-connectivity). Sequence in context: A268242 A309509 A216953 * A276206 A334222 A124752 Adjacent sequences:  A326783 A326784 A326785 * A326787 A326788 A326789 KEYWORD nonn AUTHOR Gus Wiseman, Jul 25 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 18 17:00 EDT 2020. Contains 337170 sequences. (Running on oeis4.)