The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A326753 Number of connected components of the set-system with BII-number n. 14
 0, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 3, 2, 2, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every finite set of finite nonempty sets has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges. LINKS Table of n, a(n) for n=0..86. EXAMPLE The set-system {{1,2},{1,4},{3}} with BII-number 268 has two connected components, so a(268) = 2. MATHEMATICA bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n, 2]], 1]; csm[s_]:=With[{c=Select[Tuples[Range[Length[s]], 2], And[OrderedQ[#], UnsameQ@@#, Length[Intersection@@s[[#]]]>0]&]}, If[c=={}, s, csm[Sort[Append[Delete[s, List/@c[[1]]], Union@@s[[c[[1]]]]]]]]]; Table[Length[csm[bpe/@bpe[n]]], {n, 0, 100}] CROSSREFS Positions of 0's and 1's are A326749. Cf. A000120, A001187, A029931, A048143, A048793, A070939, A072639, A304716, A305078, A305079 (same for MM-numbers), A323818, A326031, A326702. Ranking sequences using BII-numbers: A309314 (hyperforests), A326701 (set partitions), A326703 (chains), A326704 (antichains), A326750 (clutters), A326751 (blobs), A326752 (hypertrees), A326754 (covers). Sequence in context: A278401 A069935 A283530 * A062093 A177457 A357139 Adjacent sequences: A326750 A326751 A326752 * A326754 A326755 A326756 KEYWORD nonn AUTHOR Gus Wiseman, Jul 23 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 21 17:02 EDT 2023. Contains 365503 sequences. (Running on oeis4.)