OFFSET
1,3
COMMENTS
A binary index of n is any position of a 1 in its reversed binary expansion. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every finite set of finite nonempty sets has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, it follows that the BII-number of {{2},{1,3}} is 18.
Elements of a set-system are sometimes called edges. In an antichain of sets, no edge is a subset or superset of any other edge.
LINKS
John Tyler Rascoe, Table of n, a(n) for n = 1..7580
John Tyler Rascoe, Python Program.
EXAMPLE
The sequence of all antichains of nonempty sets together with their BII-numbers begins:
0: {}
1: {{1}}
2: {{2}}
3: {{1},{2}}
4: {{1,2}}
8: {{3}}
9: {{1},{3}}
10: {{2},{3}}
11: {{1},{2},{3}}
12: {{1,2},{3}}
16: {{1,3}}
18: {{2},{1,3}}
20: {{1,2},{1,3}}
32: {{2,3}}
33: {{1},{2,3}}
36: {{1,2},{2,3}}
48: {{1,3},{2,3}}
52: {{1,2},{1,3},{2,3}}
MATHEMATICA
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n, 2]], 1];
stableQ[u_, Q_]:=!Apply[Or, Outer[#1=!=#2&&Q[#1, #2]&, u, u, 1], {0, 1}];
Select[Range[100], stableQ[bpe/@bpe[#], SubsetQ]&]
PROG
(Python) # see linked program
CROSSREFS
Antichains of sets are counted by A000372.
Antichains of nonempty sets are counted by A014466.
MM-numbers of antichains of multisets are A316476.
BII-numbers of chains of nonempty sets are A326703.
KEYWORD
nonn,base
AUTHOR
Gus Wiseman, Jul 21 2019
STATUS
approved