login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A326706
Numbers m such that beta(m) = tau(m)/2 + k for some k >= 4, where beta(m) is the number of Brazilian representations of m and tau(m) is the number of divisors of m.
0
16777215, 435356467, 1073741823, 68719476735, 1099511627775, 4398046511103, 35184372088831, 281474976710655, 14901161193847656, 18014398509481983
OFFSET
1,1
COMMENTS
As tau(m) = 2 * (beta(m) - k) is even, the terms of this sequence are not squares.
There are two classes of terms (see array in link and examples):
1) Non-oblong composites which have five or more Brazilian representations with three digits or more, they form a subsequence of A326705. The smallest example is a(1) = 16777215 = M_24.
2) Oblong numbers that have six or more Brazilian representations with three digits or more, they form a subsequence of A309062. The smallest example is a(9) (see 2nd example).
For a(1) to a(10), the numbers k are respectively 5, 4, 5, 6, 5, 5, 4, 7, 4 and 5.
Some Mersenne numbers are terms: M_24 = a(1), M_30 = a(3), M_36 = a(4), M_40 = a(5), M_42 = a(6), M_45 = a(7), M_48 = a(8), M_54 = a(10).
EXAMPLE
One example of each type:
1) Non-oblong with beta"(m) = 5; tau(435356467) = 64 and 435356467 = (6^12 - 1)/5 has exactly five Brazilian representations with three digits or more: R(12)_6 = 777777_36 = (43,43,43)_216 = (259,259,259)_1296 = (31,31,31)_3747 and has 31 representations with 2 digits, so beta(435356467) = 36 and k = 4.
2) Oblong with beta"(m) = 6; tau(14901161193847656) = 768 and 14901161193847656 = (5^24 - 1)/4 = 122070312*122070313 is oblong. The six Brazilian representations with three digits or more of this term are R(24)_5 = 666666666666_25 = (31,31,31,31,31,31,31,31)_125 = (156,156,156,156,156)_625, =(3906,3906,3906,3906)_15625 = (97656,97656,97656)_390625 so beta"(14901161193847656) = 6 and beta(61035156) = (tau(61035156)/2 - 2) + 6 = 388 and k = 4.
PROG
(PARI) okrepu3(b, target, lim) = {my(k = 3, nb = 0, x); while ((x=(b^k-1)/(b-1)) <= target, if (x==target, nb++); k++); nb; }
dge3(n, d) = {my(nb=0, ndi, limi); for (i=1, #d, ndi = n/d[i]; limi = sqrtint(ndi); for (k=d[i]+1, limi, nb += okrepu3(k, ndi, limi); ); ); nb; }
deq2(n, d) = {my(nb=0, nk); for (k=1, #d\2, nk = (n - d[k])/d[k]; if (nk > d[k], nb++); ); nb; }
beta(n) = {if (n<3, return (0)); my(d=divisors(n)); deq2(n, d) + dge3(n, d) - 1; }
isok(n) = beta(n) - numdiv(n)/2 > = 4; \\ Michel Marcus, Aug 10 2019
CROSSREFS
Cf. A000005 (tau), A220136 (beta).
Subsequence of A167782, A167783 and A290869.
Cf. A326378 (tau(m)/2 - 2), A326379 (tau(m)/2 - 1), A326380 (tau(m)/2), A326381 (tau(m)/2 + 1), A326382 (tau(m)/2 + 2), A326383 (tau(m)/2 + 3), this sequence (tau(m)/2 + k, k >= 4).
Cf. A291592 (Mersenne numbers).
Sequence in context: A330247 A365853 A034598 * A011574 A022540 A223604
KEYWORD
nonn,base,hard,more
AUTHOR
Bernard Schott, Aug 09 2019
STATUS
approved