login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A034598
Second coefficient of extremal theta series of even unimodular lattice in dimension 24n.
4
1, 16773120, 39007332000, 15281788354560, 2972108280960000, 406954241261568000, 45569082381053868000, 4499117081888292864000, 408472720963469499617280, 34975479259332252426240000
OFFSET
0,2
COMMENTS
Although these initially increase, they eventually go negative at about term 1700 (i.e. dimension about 40800) - see references.
REFERENCES
J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag.
LINKS
C. L. Mallows, A. M. Odlyzko and N. J. A. Sloane, Upper bounds for modular forms, lattices and codes, J. Alg., 36 (1975), 68-76.
C. L. Mallows and N. J. A. Sloane, An Upper Bound for Self-Dual Codes, Information and Control, 22 (1973), 188-200.
G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.
E. M. Rains and N. J. A. Sloane, Self-dual codes, pp. 177-294 of Handbook of Coding Theory, Elsevier, 1998 (Abstract, pdf, ps).
N. J. A. Sloane, My favorite integer sequences, in Sequences and their Applications (Proceedings of SETA '98).
EXAMPLE
When n=1 we get the theta series of the 24-dimensional Leech lattice: 1+196560*q^4+16773120*q^6+... (see A008408). For n=2 we get A004672 and for n=3, A004675.
MAPLE
For Maple program see A034597.
MATHEMATICA
terms = 10; Reap[For[mu = 1; Print[1]; Sow[1], mu < terms, mu++, md = mu + 3; f = 1 + 240*Sum[DivisorSigma[3, i]*x^i, {i, 1, md}]; f = Series[f, {x, 0, md}]; f = Series[f^3, {x, 0, md}]; g = Series[x*Product[ (1 - x^i)^24, {i, 1, md}], {x, 0, md}]; W0 = Series[f^mu, {x, 0, md}]; h = Series[g/f, {x, 0, md}]; A = Series[W0, {x, 0, md}]; Z = A; For[i = 1, i <= mu, i++, Z = Series[Z*h, {x, 0, md}]; A = Series[A - SeriesCoefficient[A, {x, 0, i}]*Z, {x, 0, md}]]; an = SeriesCoefficient[A, {x, 0, mu+2}]; Print[an]; Sow[an]]][[2, 1]] (* Jean-François Alcover, Jul 08 2017, adapted from Maple program for A034597 *)
CROSSREFS
Cf. A034597 (leading coefficient).
Sequence in context: A255164 A330247 A365853 * A326706 A011574 A022540
KEYWORD
sign
AUTHOR
STATUS
approved