login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A034598 Second coefficient of extremal theta series of even unimodular lattice in dimension 24n. 4

%I #19 Jul 08 2017 12:17:21

%S 1,16773120,39007332000,15281788354560,2972108280960000,

%T 406954241261568000,45569082381053868000,4499117081888292864000,

%U 408472720963469499617280,34975479259332252426240000

%N Second coefficient of extremal theta series of even unimodular lattice in dimension 24n.

%C Although these initially increase, they eventually go negative at about term 1700 (i.e. dimension about 40800) - see references.

%D J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag.

%H N. J. A. Sloane, <a href="/A034598/b034598.txt">Table of n, a(n) for n = 0..100</a>

%H C. L. Mallows, A. M. Odlyzko and N. J. A. Sloane, <a href="https://doi.org/10.1016/0021-8693(75)90155-6">Upper bounds for modular forms, lattices and codes</a>, J. Alg., 36 (1975), 68-76.

%H C. L. Mallows and N. J. A. Sloane, <a href="http://dx.doi.org/10.1016/S0019-9958(73)90273-8">An Upper Bound for Self-Dual Codes</a>, Information and Control, 22 (1973), 188-200.

%H G. Nebe, E. M. Rains and N. J. A. Sloane, <a href="http://neilsloane.com/doc/cliff2.html">Self-Dual Codes and Invariant Theory</a>, Springer, Berlin, 2006.

%H E. M. Rains and N. J. A. Sloane, Self-dual codes, pp. 177-294 of Handbook of Coding Theory, Elsevier, 1998 (<a href="http://neilsloane.com/doc/self.txt">Abstract</a>, <a href="http://neilsloane.com/doc/self.pdf">pdf</a>, <a href="http://neilsloane.com/doc/self.ps">ps</a>).

%H N. J. A. Sloane, <a href="http://neilsloane.com/doc/sg.txt">My favorite integer sequences</a>, in Sequences and their Applications (Proceedings of SETA '98).

%e When n=1 we get the theta series of the 24-dimensional Leech lattice: 1+196560*q^4+16773120*q^6+... (see A008408). For n=2 we get A004672 and for n=3, A004675.

%p For Maple program see A034597.

%t terms = 10; Reap[For[mu = 1; Print[1]; Sow[1], mu < terms, mu++, md = mu + 3; f = 1 + 240*Sum[DivisorSigma[3, i]*x^i, {i, 1, md}]; f = Series[f, {x, 0, md}]; f = Series[f^3, {x, 0, md}]; g = Series[x*Product[ (1 - x^i)^24, {i, 1, md}], {x, 0, md}]; W0 = Series[f^mu, {x, 0, md}]; h = Series[g/f, {x, 0, md}]; A = Series[W0, {x, 0, md}]; Z = A; For[i = 1, i <= mu, i++, Z = Series[Z*h, {x, 0, md}]; A = Series[A - SeriesCoefficient[A, {x, 0, i}]*Z, {x, 0, md}]]; an = SeriesCoefficient[A, {x, 0, mu+2}]; Print[an]; Sow[an]]][[2,1]] (* _Jean-François Alcover_, Jul 08 2017, adapted from Maple program for A034597 *)

%Y Cf. A034597 (leading coefficient).

%K sign

%O 0,2

%A _N. J. A. Sloane_.

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 24 05:49 EDT 2024. Contains 371918 sequences. (Running on oeis4.)