OFFSET
0,2
REFERENCES
J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag.
LINKS
N. J. A. Sloane, Table of n, a(n) for n = 0..100
C. L. Mallows, A. M. Odlyzko and N. J. A. Sloane, Upper bounds for modular forms, lattices and codes, J. Alg., 36 (1975), 68-76.
C. L. Mallows and N. J. A. Sloane, An Upper Bound for Self-Dual Codes, Information and Control, 22 (1973), 188-200.
G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.
E. M. Rains and N. J. A. Sloane, Self-dual codes, pp. 177-294 of Handbook of Coding Theory, Elsevier, 1998 (Abstract, pdf, ps).
N. J. A. Sloane, My favorite integer sequences, in Sequences and their Applications (Proceedings of SETA '98).
EXAMPLE
MAPLE
# Extremal theta series:
with(numtheory): B := 1:
# set mu:
for mu from 1 to 10 do
# set max deg:
md := mu+3;
f := 1+240*add(sigma[3](i)*x^i, i=1..md);
f := series(f, x, md);
f := series(f^3, x, md);
g := series(x*mul((1-x^i)^24, i=1..md), x, md);
W0 := series(f^mu, x, md):
h := series(g/f, x, md):
A := series(W0, x, md):
Z := A:
for i from 1 to mu do
Z := series(Z*h, x, md);
A := series(A-coeff(A, x, i)*Z, x, md);
od:
B := B, coeff(A, x, mu+1);
od:
lprint(B);
MATHEMATICA
terms = 11; Reap[For[mu = 1, mu <= terms, mu++, md = mu + 3; f = 1 + 240*Sum[DivisorSigma[3, i]*x^i, {i, 1, md}]; f = Series[f, {x, 0, md}]; f = Series[f^3, {x, 0, md}]; g = Series[x*Product[ (1 - x^i)^24, {i, 1, md}], {x, 0, md}]; W0 = Series[f^mu, {x, 0, md}]; h = Series[g/f, {x, 0, md}]; A = Series[W0, {x, 0, md}]; Z = A; For[ i = 1 , i <= mu, i++, Z = Series[Z*h, {x, 0, md}]; A = Series[A - SeriesCoefficient[A, {x, 0, i}]*Z, {x, 0, md}]]; an = SeriesCoefficient[A, {x, 0, mu+1}]; Print[an]; Sow[an]]][[2, 1]] (* Jean-François Alcover, Jul 08 2017, adapted from Maple *)
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved