login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A034597
Leading coefficient of extremal theta series of even unimodular lattice in dimension 24n.
5
1, 196560, 52416000, 6218175600, 565866362880, 45792819072000, 3486157968384000, 256206274225902000, 18422726047165440000, 1305984407917646096640, 91692325887531393024000
OFFSET
0,2
REFERENCES
J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag.
LINKS
C. L. Mallows, A. M. Odlyzko and N. J. A. Sloane, Upper bounds for modular forms, lattices and codes, J. Alg., 36 (1975), 68-76.
C. L. Mallows and N. J. A. Sloane, An Upper Bound for Self-Dual Codes, Information and Control, 22 (1973), 188-200.
G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.
E. M. Rains and N. J. A. Sloane, Self-dual codes, pp. 177-294 of Handbook of Coding Theory, Elsevier, 1998 (Abstract, pdf, ps).
N. J. A. Sloane, My favorite integer sequences, in Sequences and their Applications (Proceedings of SETA '98).
EXAMPLE
When n=1 we get the theta series of the 24-dimensional Leech lattice: 1+196560*q^4+16773120*q^6+... (see A008408). For n=2 we get A004672 and for n=3, A004675.
MAPLE
# Extremal theta series:
with(numtheory): B := 1:
# set mu:
for mu from 1 to 10 do
# set max deg:
md := mu+3;
f := 1+240*add(sigma[3](i)*x^i, i=1..md);
f := series(f, x, md);
f := series(f^3, x, md);
g := series(x*mul((1-x^i)^24, i=1..md), x, md);
W0 := series(f^mu, x, md):
h := series(g/f, x, md):
A := series(W0, x, md):
Z := A:
for i from 1 to mu do
Z := series(Z*h, x, md);
A := series(A-coeff(A, x, i)*Z, x, md);
od:
B := B, coeff(A, x, mu+1);
od:
lprint(B);
MATHEMATICA
terms = 11; Reap[For[mu = 1, mu <= terms, mu++, md = mu + 3; f = 1 + 240*Sum[DivisorSigma[3, i]*x^i, {i, 1, md}]; f = Series[f, {x, 0, md}]; f = Series[f^3, {x, 0, md}]; g = Series[x*Product[ (1 - x^i)^24, {i, 1, md}], {x, 0, md}]; W0 = Series[f^mu, {x, 0, md}]; h = Series[g/f, {x, 0, md}]; A = Series[W0, {x, 0, md}]; Z = A; For[ i = 1 , i <= mu, i++, Z = Series[Z*h, {x, 0, md}]; A = Series[A - SeriesCoefficient[A, {x, 0, i}]*Z, {x, 0, md}]]; an = SeriesCoefficient[A, {x, 0, mu+1}]; Print[an]; Sow[an]]][[2, 1]] (* Jean-François Alcover, Jul 08 2017, adapted from Maple *)
CROSSREFS
Cf. A034598 (second coefficient, which eventually becomes negative), A034414, A034415.
Sequence in context: A008408 A305920 A001942 * A037148 A323282 A175744
KEYWORD
nonn
AUTHOR
STATUS
approved