login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A326708
Non-Brazilian squares of primes.
2
4, 9, 25, 49, 169, 289, 361, 529, 841, 961, 1369, 1681, 1849, 2209, 2809, 3481, 3721, 4489, 5041, 5329, 6241, 6889, 7921, 9409, 10201, 10609, 11449, 11881, 12769, 16129, 17161, 18769, 19321, 22201, 22801, 24649, 26569, 27889, 29929, 32041, 32761
OFFSET
1,1
COMMENTS
This sequence is a subsequence of A326707.
For these terms, we have the relations beta'(p^2) = beta"(p^2) = beta(p^2) = (tau(p^2) - 3)/2 = 0.
This sequence = A001248 \ {121} because 121 is the only known square of a prime that is Brazilian (Wikipédia link); 121 is a solution y^q of the Nagell-Ljunggren equation y^q = (b^m-1)/(b-1) with y = 11, q =2, b = 3, m = 5 (see A208242), hence 121 = 11^2 = (3^5 -1)/2 = 11111_3.
The corresponding square roots are: 2, 3, 5, 7, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, ...
EXAMPLE
49 = 7^2 is not Brazilian, so beta(49) = 0 with tau(49) = 3.
MATHEMATICA
brazBases[n_] := Select[Range[2, n - 2], Length[Union[IntegerDigits[n, #]]] == 1 &]; Select[Range[2, 1000], PrimeQ[#^(1/2)]&& brazBases[#] == {} &] (* Metin Sariyar, Sep 05 2019 *)
CROSSREFS
Cf. A190300.
Subsequence of A000290 and of A220570 and of A190300.
Intersection of A001248 and A326707.
Sequence in context: A357754 A133019 A376746 * A028866 A146981 A068373
KEYWORD
nonn,base
AUTHOR
Bernard Schott, Aug 26 2019
STATUS
approved