

A190300


Composite numbers that are not Brazilian.


7



4, 6, 9, 25, 49, 169, 289, 361, 529, 841, 961, 1369, 1681, 1849, 2209, 2809, 3481, 3721, 4489, 5041, 5329, 6241, 6889, 7921, 9409, 10201, 10609, 11449, 11881, 12769, 16129, 17161, 18769, 19321, 22201, 22801, 24649, 26569, 27889, 29929, 32041, 32761, 36481, 37249, 38809, 39601, 44521, 49729
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Other than the term 6 and the missing term 121, is this sequence the same as A001248?  Nathaniel Johnston, May 24 2011
From Bernard Schott, Dec 04 2012: (Start)
Yes, because
1) 4 is not a Brazilian number [4 = 100_2].
2) 6 is not a Brazilian number [6 = 110_2 = 20_3 = 12_4].
3) Theorem 1, page 32 of Quadrature article mentioned in links: If n > 7 is not Brazilian, then n is a prime or the square of a prime.
4) Theorem 5, page 37 of Quadrature article mentioned in links: The only square of prime number which is Brazilian is 121 = 11^2 = 11111_3.
(End)
There is an infinity of composite numbers that are not Brazilian: Corollary 2, page 37 of Quadrature article in links (consider the sequence of squares of prime numbers for p >= 13).  Bernard Schott, Dec 17 2012
Also semiprimes that are not Brazilian.  Bernard Schott, Apr 11 2019


LINKS

Robert Israel, Table of n, a(n) for n = 1..10000 (first 208 terms from Robert G. Wilson v)
Bernard Schott, Les nombres brĂ©siliens, Quadrature, no. 76, avriljuin 2010, pages 3038; included here with permission from the editors of Quadrature.


FORMULA

a(1) = 2^2 = p_1^2, a(2) = 2*3 = p_1*p_2, a(3) = 3^2 = p_2^2, a(4) = 5^2 = p_3^2, a(5) = 7^2 = p_4^2, a(6) = 13^2 = p_6^2, ..., for n >= 6, a(n) = p_n^2, where p_k is the kth prime number.  Bernard Schott, Dec 04 2012


EXAMPLE

a(10) = p_10^2 = 29^2 = 841.


MAPLE

4, 6, 9, 25, 49, seq(ithprime(i)^2, i=6..100); # Robert Israel, Apr 17 2019


MATHEMATICA

brazBases[n_] := Select[Range[2, n  2], Length[Union[IntegerDigits[n, #]]] == 1 &]; Select[Range[2, 10000], ! PrimeQ[#] && brazBases[#] == {} &] (* T. D. Noe, Dec 26 2012 *)
f[n_] := Block[{b = 2}, While[ Length@ Union@ IntegerDigits[n, b] != 1, b++]; b]; k = 4; lst = {}; While[k < 50001, If[ !PrimeQ@ k && 1 + f@ k == k, AppendTo[lst, k]]; k++]; lst (* Robert G. Wilson v, Mar 30 2014 *)


PROG

(PARI) isnotb(n) = my(c=0, d); for(b=2, n2, d=digits(n, b); if(vecmin(d)==vecmax(d), c=n; break); c++); (c==max(n3, 0)); \\ A220570
lista(nn) = forcomposite(n=1, nn, if (isnotb(n), print1(n, ", "))); \\ Michel Marcus, Apr 14 2019


CROSSREFS

Cf. A085104, A125134, A189891, A220571, A307507.
Intersection of A002808 and A220570.
Intersection of A001358 and A220570.
Sequence in context: A246569 A326063 A085721 * A081614 A192220 A215477
Adjacent sequences: A190297 A190298 A190299 * A190301 A190302 A190303


KEYWORD

nonn


AUTHOR

N. J. A. Sloane, May 14 2011


EXTENSIONS

a(6)a(24) from Nathaniel Johnston, May 24 2011
a(25) onward from Robert G. Wilson v, Mar 30 2014


STATUS

approved



