login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A190300
Composite numbers that are not Brazilian.
9
4, 6, 9, 25, 49, 169, 289, 361, 529, 841, 961, 1369, 1681, 1849, 2209, 2809, 3481, 3721, 4489, 5041, 5329, 6241, 6889, 7921, 9409, 10201, 10609, 11449, 11881, 12769, 16129, 17161, 18769, 19321, 22201, 22801, 24649, 26569, 27889, 29929, 32041, 32761, 36481, 37249, 38809, 39601, 44521, 49729
OFFSET
1,1
COMMENTS
Other than the term 6 and the missing term 121, is this sequence the same as A001248? - Nathaniel Johnston, May 24 2011
From Bernard Schott, Dec 04 2012: (Start)
Yes, because
1) 4 is not a Brazilian number [4 = 100_2].
2) 6 is not a Brazilian number [6 = 110_2 = 20_3 = 12_4].
3) Theorem 1, page 32 of Quadrature article mentioned in links: If n > 7 is not Brazilian, then n is a prime or the square of a prime.
4) Theorem 5, page 37 of Quadrature article mentioned in links: The only square of prime number which is Brazilian is 121 = 11^2 = 11111_3.
(End)
There is an infinity of composite numbers that are not Brazilian: Corollary 2, page 37 of Quadrature article in links (consider the sequence of squares of prime numbers for p >= 13). - Bernard Schott, Dec 17 2012
Also semiprimes that are not Brazilian. - Bernard Schott, Apr 11 2019
LINKS
Robert Israel, Table of n, a(n) for n = 1..10000 (first 208 terms from Robert G. Wilson v)
Bernard Schott, Les nombres brésiliens, Quadrature, no. 76, avril-juin 2010, pages 30-38; included here with permission from the editors of Quadrature.
FORMULA
a(1) = 2^2 = p_1^2, a(2) = 2*3 = p_1*p_2, a(3) = 3^2 = p_2^2, a(4) = 5^2 = p_3^2, a(5) = 7^2 = p_4^2, a(6) = 13^2 = p_6^2, ..., for n >= 6, a(n) = p_n^2, where p_k is the k-th prime number. - Bernard Schott, Dec 04 2012
EXAMPLE
a(10) = p_10^2 = 29^2 = 841.
MAPLE
4, 6, 9, 25, 49, seq(ithprime(i)^2, i=6..100); # Robert Israel, Apr 17 2019
MATHEMATICA
brazBases[n_] := Select[Range[2, n - 2], Length[Union[IntegerDigits[n, #]]] == 1 &]; Select[Range[2, 10000], ! PrimeQ[#] && brazBases[#] == {} &] (* T. D. Noe, Dec 26 2012 *)
f[n_] := Block[{b = 2}, While[ Length@ Union@ IntegerDigits[n, b] != 1, b++]; b]; k = 4; lst = {}; While[k < 50001, If[ !PrimeQ@ k && 1 + f@ k == k, AppendTo[lst, k]]; k++]; lst (* Robert G. Wilson v, Mar 30 2014 *)
PROG
(PARI) isnotb(n) = my(c=0, d); for(b=2, n-2, d=digits(n, b); if(vecmin(d)==vecmax(d), c=n; break); c++); (c==max(n-3, 0)); \\ A220570
lista(nn) = forcomposite(n=1, nn, if (isnotb(n), print1(n, ", "))); \\ Michel Marcus, Apr 14 2019
CROSSREFS
Intersection of A002808 and A220570.
Intersection of A001358 and A220570.
Sequence in context: A368648 A326063 A085721 * A338378 A081614 A192220
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, May 14 2011
EXTENSIONS
a(6)-a(24) from Nathaniel Johnston, May 24 2011
a(25) onward from Robert G. Wilson v, Mar 30 2014
STATUS
approved