OFFSET
1,1
COMMENTS
The brilliant semiprime numbers in order of appearance are: 10, 15, 35, 121, 169, 143, 187, 143, 35, 25, 49, 121, 169, 121, 253, 247, 391, 407, 143, 187, 299, 361, 169, 35, 143, 187, 319, 289, 121, 143, ... It is observed that some numbers repeat: 35 = 9 + 26 = 25 + 10 = 14 + 21 or 143 = 74 + 69 = 118 + 25 = 49 + 94 = 21 + 122 = 86 + 57.
EXAMPLE
MATHEMATICA
Block[{a = {4}}, Do[Block[{k = 6}, While[Nand[FreeQ[a, k], PrimeOmega[k] == 2, If[PrimeOmega[#] == 2, SameQ @@ Map[IntegerLength, FactorInteger[#][[All, 1]] ], False] &[a[[-1]] + k]], k++]; AppendTo[a, k]], {i, 58}]; a] (* Michael De Vlieger, Nov 06 2020 *)
PROG
(Magma) bs:=func<n|#Divisors(n) eq 3 or &+[d[2]: d in Factorization(n)] eq 2 and #Intseq(Factorization(n)[1][1]) eq #Intseq(Factorization(n)[2][1])>; s:=func<n|&+[d[2]: d in Factorization(n)] eq 2>; a:=[ 4 ]; for n in [2..60] do k:=2; while k in a or not s(k) or not bs(k+a[n-1]) do k:=k+1; end while; Append(~a, k); end for; a;
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Marius A. Burtea, Oct 26 2020
STATUS
approved