login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A338378
a(1) = 4. a(n) is the smallest semiprime number, which is not an earlier term, for which a(n - 1) + a(n) is a brilliant semiprime number (A078972).
0
4, 6, 9, 26, 95, 74, 69, 118, 25, 10, 15, 34, 87, 82, 39, 214, 33, 358, 49, 94, 93, 206, 155, 14, 21, 122, 65, 254, 35, 86, 57, 262, 115, 106, 141, 46, 123, 166, 55, 382, 91, 346, 183, 38, 209, 194, 129, 58, 85, 466, 51, 158, 161, 398, 119, 134, 185, 62, 159
OFFSET
1,1
COMMENTS
The brilliant semiprime numbers in order of appearance are: 10, 15, 35, 121, 169, 143, 187, 143, 35, 25, 49, 121, 169, 121, 253, 247, 391, 407, 143, 187, 299, 361, 169, 35, 143, 187, 319, 289, 121, 143, ... It is observed that some numbers repeat: 35 = 9 + 26 = 25 + 10 = 14 + 21 or 143 = 74 + 69 = 118 + 25 = 49 + 94 = 21 + 122 = 86 + 57.
EXAMPLE
a(1) + a(2) = 4 + 6 = A001358(1) + A001358(2) = 10 = A078972(4).
a(2) + a(3) = 6 + 9 = A001358(2) + A001358(3) = 15 = A078972(6).
a(3) + a(4) = 9 + 26 = A001358(3) + A001358(10) = 35 = A078972(9).
a(4) + a(5) = 26 + 95 = A001358(10) + A001358(34) = 121 = A078972(11).
MATHEMATICA
Block[{a = {4}}, Do[Block[{k = 6}, While[Nand[FreeQ[a, k], PrimeOmega[k] == 2, If[PrimeOmega[#] == 2, SameQ @@ Map[IntegerLength, FactorInteger[#][[All, 1]] ], False] &[a[[-1]] + k]], k++]; AppendTo[a, k]], {i, 58}]; a] (* Michael De Vlieger, Nov 06 2020 *)
PROG
(Magma) bs:=func<n|#Divisors(n) eq 3 or &+[d[2]: d in Factorization(n)] eq 2 and #Intseq(Factorization(n)[1][1]) eq #Intseq(Factorization(n)[2][1])>; s:=func<n|&+[d[2]: d in Factorization(n)] eq 2>; a:=[ 4 ]; for n in [2..60] do k:=2; while k in a or not s(k) or not bs(k+a[n-1]) do k:=k+1; end while; Append(~a, k); end for; a;
CROSSREFS
Sequence in context: A326063 A085721 A190300 * A081614 A192220 A215477
KEYWORD
nonn,base
AUTHOR
Marius A. Burtea, Oct 26 2020
STATUS
approved