login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A338377
G.f. satisfies: A(x) = (1 + x * d/dx(x*A(x)) )^n.
3
1, 1, 9, 226, 10745, 811026, 88058362, 12920344256, 2453913830097, 584608650175630, 170543970449421371, 59769169004510011674, 24775053368568412720967, 11989194513429991057937296, 6698670769128767044654361520, 4280089524780608663200103685056, 3101341801862271814724389007080481
OFFSET
0,3
LINKS
FORMULA
G.f. satisfies: A(x) = (1 + x * A(x) + x^2 * A'(x) )^n.
a(n) ~ A238223 * exp(1) * n! * n^(n + 1 - 1/n).
a(n) ~ A238223 * exp(1) * n^(n+1) * n! * (1 - log(n)/n).
EXAMPLE
a(2) = A113662(2) = 9
a(3) = A113663(3) = 226
a(4) = A113664(4) = 10745
a(5) = A113665(5) = 811026
a(6) = A113666(6) = 88058362
a(7) = A113667(7) = 12920344256
a(8) = A113668(8) = 2453913830097
PROG
(PARI) {a(n)=local(A=1+x*O(x^n)); for(i=1, n, A=(1+x*deriv(x*A))^n); polcoeff(A, n, x)}
for(n=0, 20, print1(a(n), ", "))
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Oct 23 2020
STATUS
approved